Effect of Sol-Gel Synthesized BiFeO3 Nanoparticle Addition in YBa2Cu3O7–δ (Y123) Superconductor Synthesized by Standard Solid State Reaction Method

Article Preview

Abstract:

The effects of the multiforric BiFO3 nanoparticles addition on the structure and superconducting properties of YBa2Cu3O7–δ (Y123) with different concentrations were systematically investigated using X-ray diffraction (XRD), field emission scanning electron micrograph (FESEM), EDX and four point probe measurement. It was found that the added samples were predominant by Y-123 phase beside small amount of Y-211 and unreacted BiFeO3 secondary phases. Samples with less (wt.%) BFO added YBCO precursor powder preserved the orthorhombic structure similar to the pure YBCO, while samples with higher wt% addition show orthorhombic-to-tetragonal transition tendency. The samples became more porous and their grain size slightly decreased with addition of BiFeO3. The addition of nanoBiFeO3 disturbed the grain growth of Y123, thus resulting in the degradation of superconducting properties of the samples. The superconducting transition temperature (Tc onset) of samples decreased from 92 K for x=0.0 to 44 K for x=10.0 wt. %, which could be attributable to oxygen vacancy disorder.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

245-251

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] D. Shi, S. Dou, J. H. Kim, T. Silver, R. Ko, K. Song, et al., YBCO coated conductor using biaxially textured Ni–0.1% Mn substrate,, Physica C: Superconductivity and its applications, vol. 434, pp.79-84, (2006).

DOI: 10.1016/j.physc.2005.12.006

Google Scholar

[2] K. Iida, N. Babu, Y.-H. Shi, and D. Cardwell, The effect of the addition of zirconium-containing compounds on the microstructure and superconducting properties of mono-domain Y Ba Cu O bulk superconductors,, Superconductor Science Technology, vol. 18, pp.704-709, (2005).

DOI: 10.1088/0953-2048/18/5/021

Google Scholar

[3] M. KRAMER, S. YOO, R. MCCALLUM, W. YELON, H. XIE, and P. ALLENSPACH, Hole filling, charge transfer and superconductivity in Nd1+ xBa2-xCu3O7+ δ,, Physica. C. Superconductivity, vol. 219, pp.145-155, (1994).

DOI: 10.1016/0921-4534(94)90027-2

Google Scholar

[4] H. Zhang, Y. Liu, H. Li, J. Qu, X. Li, and Y. Feng, Effects of solid solutions on the superconducting properties of Gd–Ba–Cu–O superconductors,, Superconductor Science and Technology, vol. 18, p.1317, (2005).

DOI: 10.1088/0953-2048/18/10/011

Google Scholar

[5] F. B. Azzouz, M. Zouaoui, A. Mellekh, M. Annabi, G. Van Tendeloo, and M. B. Salem, Flux pinning by Al-based nanoparticles embedded in YBCO: A transmission electron microscopic study,, Physica C: Superconductivity and its applications, vol. 455, pp.19-24, (2007).

DOI: 10.1016/j.physc.2007.01.033

Google Scholar

[6] Y. Zhao, C. Cheng, and J. Wang, Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor,, Superconductor Science and Technology, vol. 18, pp. S43-S46, (2005).

DOI: 10.1088/0953-2048/18/2/010

Google Scholar

[7] T. Campbell, T. Haugan, I. Maartense, J. Murphy, L. Brunke, and P. Barnes, Flux pinning effects of Y 2 O 3 nanoparticulate dispersions in multilayered YBCO thin films,, Physica C: Superconductivity, vol. 423, pp.1-8, (2005).

DOI: 10.1016/j.physc.2004.09.018

Google Scholar

[8] H. Alloul, J. Bobroff, and P. Mendels, Comment on "Al NMR Local Probe of Local Moments Induced by an Al impurity in High-T c Cuprate La 1.85 Sr 0.15 CuO 4",, Physical review letters, vol. 78, p.2494, (1997).

DOI: 10.1103/physrevlett.78.2494

Google Scholar

[9] I. Bouchoucha, F. B. Azzouz, M. Annabi, M. Zouaoui, and M. B. Salem, The study on the ZnO and Zn 0.95 Mn 0.05 O added YBCO system: Investigation of microstructure and transport properties,, Physica C: Superconductivity, vol. 470, pp.262-268, (2010).

DOI: 10.1016/j.physc.2009.11.034

Google Scholar

[10] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO 3 films at room temperature,, Nature materials, vol. 5, p.823, (2006).

DOI: 10.1038/nmat1731

Google Scholar

[11] D. Springer, S. K. Nair, M. He, C. Lu, S. Cheong, T. Wu, et al., Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3/YBa 2 Cu 3 O 7 bilayers,, Physical Review B, vol. 93, p.064510, (2016).

Google Scholar

[12] P. Benzi, E. Bottizzo, and N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors,, Journal of Crystal Growth, vol. 269, pp.625-629, (2004).

DOI: 10.1016/j.jcrysgro.2004.05.082

Google Scholar

[13] E. Brecht, W. Schmahl, G. Miehe, M. Rodewald, H. Fuess, N. Andersen, et al., Thermal treatment of YBa 2Cu 3-xAl xO 6+ delta single crystals in different atmospheres and neutron-diffraction study of excess oxygen pinned by the Al substituents,, Physica C Superconductivity, vol. 265, pp.53-66, (1996).

DOI: 10.1016/0921-4534(96)00255-9

Google Scholar

[14] J. Zhang, F. Liu, G. Cheng, J. Shang, J. Liu, S. Cao, et al., Electron structure and vacancy properties and Al-substitution dependence of the positron lifetime in Y1: 2: 3 superconducting ceramics,, Physics Letters A, vol. 201, pp.70-76, (1995).

DOI: 10.1016/0375-9601(95)00237-w

Google Scholar

[15] V. Awana, S. Malik, W. Yelon, C. A. Cardoso, O. De Lima, A. Gupta, et al., Neutron diffraction on Er1− xCaxBa2Cu3O7− δ (0.0≤ x≤ 0.3) system: possible oxygen vacancies in Cu O2 planes,, Physica C: Superconductivity, vol. 338, pp.197-204, (2000).

DOI: 10.1016/s0921-4534(00)00308-7

Google Scholar

[16] S. Wimbush, J. Durrell, C. Tsai, H. Wang, Q. Jia, M. Blamire, et al., Enhanced critical current in YBa2Cu3O7− δ thin films through pinning by ferromagnetic YFeO3 nanoparticles,, Superconductor Science and Technology, vol. 23, p.045019, (2010).

DOI: 10.1088/0953-2048/23/4/045019

Google Scholar