Modgil-Virk Formulation of Single Activation Energy Model of Radiation Damage Annealing in SSNTDs: A Critical Appraisal

Article Preview

Abstract:

Passage of heavy ions produces radiation-damage trails known as latent tracks in a variety of solid-state nuclear-track detectors (SSNTDs). These tracks are made visible in an optical microscope by a simple process known as chemical etching. It is a well-known fact that latent tracks are radiation damage trails in SSNTDs, which can be annealed by thermal heating. Modgil-Virk formulation of single-activation-energy model of radiation damage annealing was proposed as an empirical approach for explaining the thermal fading of nuclear tracks in SSNTDs. The empirical formulation of this model is based on track annealing data collected from both isothermal and isochronal experiments performed on different types of SSNTDs using a variety of heavy ion beams and fission fragments. The main objective of this empirical model was to resolve some contradictions of variable activation energy derived by using Arrhenius plots to study annealing in mineral SSNTDs. Some equivalent versions of the Modgil-Virk model have been proposed but the concept of single activation energy is vindicated in all empirical formulations. The model always yields a unique value of activation energy independent of the nature of the ion beam used and the degree of annealing. The anisotropy of the mineral SSNTDs is revealed by variation in activation energy along different crystal planes and even with different orientations of the ion beam on the same plane. Some recent experiments are a pointer to the successful exploitation of this model for future cosmic-rays studies using SSNTDs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

215-242

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] R. L. Fleischer, P. B. Price and R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley, (1975).

Google Scholar

[2] D. A. Young, Etching of Radiation Damage in Lithium Fluoride, Nature 182 (1958) 375-377.

DOI: 10.1038/182375a0

Google Scholar

[3] E. Dartyge, J. P. Duraud, Y. Langevin and M. Maurette, New model of nuclear particle tracks in dielectric minerals, Phys. Rev. B23 (1981) 5213-5229.

DOI: 10.1103/physrevb.23.5213

Google Scholar

[4] D. Albrecht, P. Armbruster, R. Sphor, M. Roth, K. Schaupert, and H. Stuhrmann, Investigation of Heavy Ion Produced Defect Structures in Insulators by Small Angle Scattering, Appl. Phys. A37 (1985) 37-46.

DOI: 10.1007/bf00617867

Google Scholar

[5] C. Houpert, M. Hervieu, D. Groult, F. Studer, HREM investigation of GeV heavy ion latent tracks in ferrites, Nucl. Inst. and Meth. Phys. Res. B32 (1988) 393-396.

DOI: 10.1016/0168-583x(88)90243-1

Google Scholar

[6] L.T. Chadderton, J.P. Biersack and S.L. Koul, Discontinuous Fission Tracks in Crystalline Detectors, Nucl. Tracks and Radiat. Meas. 15 (1988) 31-40.

DOI: 10.1016/1359-0189(88)90097-0

Google Scholar

[7] V. Chailley, E. Dooryhe'e, S. Bouffard and E. Balanzat, Proc. of 7th Int. Conf. on Radiation Effects in Insulators, Nagoya, Japan (1993).

Google Scholar

[8] T. A. Tombrello, C. R. Wie, N. Itoh and T. Nakayama, Formation of ion damage tracks, Phys. Lett. 100A (1984) 42-44.

DOI: 10.1016/0375-9601(84)90351-7

Google Scholar

[9] C.W. White, C.J. McHargue, P.S. Sklad, L.A. Boatner and G.C. Farlow, Ion implantation and annealing of crystalline oxides. Mater. Sci. Rep. 4(2) (1989) 41-146.

DOI: 10.1016/s0920-2307(89)80005-2

Google Scholar

[10] S.K. Modgil and H.S. Virk, Annealing of fission fragment tracks in inorganic solids, Nucl. Instrum. Meth. B12 (1985) 212-218.

Google Scholar

[11] H.S. Virk, S.K. Modgil, G. Singh and R.K. Bhatia, Annealing characteristics of heavy ion radiation damage in SSNTDs and concept of single activation energy, Nucl. Instrum. Meth. Phys. Res. B32 (1988) 401-404.

DOI: 10.1016/0168-583x(88)90245-5

Google Scholar

[12] H.S. Virk, S.K. Modgil and R.K. Bhatia, Activation energy for the annealing of radiation damage in CR-39 : An intrinsic property of detector, Nucl. Tracks Radiat. Meas. 11 (1986) 323-325.

DOI: 10.1016/1359-0189(86)90059-2

Google Scholar

[13] R. K. Bhatia and H. S. Virk, Annealing study of heavy ion tracks in CR-39, Ind. J. Pure Appl. Phys. 25 (1987) 282-283.

Google Scholar

[14] R.C. Singh, R.K. Bhatia and H.S. Virk, Annealing study of heavy ion tracks in Makrofol-N using electrochemical etching technique, lnd. J. Pure and Appl. Phys. 26 (1988) 673-674.

Google Scholar

[15] R.K. Bhatia and H.S. Virk, Heavy ion radiation damage annealing models - A new interpretation, Radiat. Eff. 107 (1989) 167.

DOI: 10.1080/00337578908228561

Google Scholar

[16] G. Singh and H.S. Virk, Track annealing studies in soda-lime glass detector, GSI Scientific Report, 1987, p.240.

Google Scholar

[17] A.S. Sandhu, S. Singh and H.S. Virk, Annealing studies of fission tracks in apatite, Ind. J. Pure Appl. Phys. 25 (1987) 97-99.

Google Scholar

[18] A. S. Sandhu, S. Singh and H.S. Virk, Annealing of fission fragment tracks in micaceous Minerals, Mineralogical J. (Japan) 13 (1987) 254-259.

DOI: 10.2465/minerj.13.254

Google Scholar

[19] A. S. Sandhu, S. Singh and H.S. Virk, Anisotropic etching and annealing studies of fission tracks in quartz, Mineralogical. J. (Japan) 14 (1988) 1-11.

DOI: 10.2465/minerj.14.1

Google Scholar

[20] L. Singh, A.S. Sandhu, S. Singh and H.S. Virk, Thermal annealing of heavy ion tracks in muscovite mica, Radiat. Eff. Def. in Solids 108 (1989) 257-266.

DOI: 10.1080/10420158908230314

Google Scholar

[21] G. Singh and H.S. Virk, Heavy ion radiation damage annealing in glass detectors, Nucl. Instrum. Meth. Phys. Res. B 44 (1989) 103-106.

Google Scholar

[22] A.S. Sandhu, L. Singh, R.C. Ramola, S. Singh and H.S. Virk, Annealing   kinetics of heavy ion radiation damage in crystalline minerals, Nucl. Instum. Meth. Phys. Res. B 46 (1990) 122-124.

DOI: 10.1016/0168-583x(90)90681-j

Google Scholar

[23] L. Singh, A.S. Sandhu, S. Singh and H.S. Virk, Etching and annealing kinetics of heavy ion tracks in quartz, Nucl. Instrum. Meth. Phys. Res. B 46 (1990) 149-151.

DOI: 10.1016/0168-583x(90)90687-p

Google Scholar

[24] A.S. Sandhu, R.C. Ramola, S. Singh and H.S. Virk, Fission track annealing in minerals, Nucl. Tracks Radiat. Meas. 17 (1990) 267-269.

DOI: 10.1016/1359-0189(90)90045-y

Google Scholar

[25] A.S. Sandhu, R.C. Ramola, S. Singh and H.S. Virk, Etching and annealing characteristics of fission tracks in garnet, Ind. J. Pure Appl. Phys. 28 (1990) 522-524.

Google Scholar

[26] G. Singh and H.S. Virk, Radiation damage annealing models in glass detectors, Radiat. Eff. Def. in Solids 114 (1990) 51-52.

DOI: 10.1080/10420159008213081

Google Scholar

[27] G. Singh and H.S. Virk H S, Thermal effects of heavy ion radiation damage in glass track detectors, Radiat. Eff. and Def. in Solids 114 (1990) 219-224.

DOI: 10.1080/10420159008213099

Google Scholar

[28] H.S. Virk, Single activation energy model of radiation damage in solid state nuclear track detectors, Curr. Sci. 61 (1991) 386-390.

Google Scholar

[29] S. Singh, L. Singh, J. Singh and H.S. Virk, Heavy ion radiation damage annealing in garnet crystal, Nucl. Tracks Radiat. Meas. 19 (1991) 121-126.

DOI: 10.1016/1359-0189(91)90155-b

Google Scholar

[30] H.S. Virk, Heavy ion radiation damage annealing in track recording insulators and single activation energy model, Nucl. Instrum. Meth. Phys. Res. B 65 (1992) 456-458.

DOI: 10.1016/0168-583x(92)95085-6

Google Scholar

[31] G. Singh and H.S. Virk (1994), Annealing characteristics of nuclear tracks in glass detectors using optical  absorption spectroscopy, J. Radioanal. & Nucl. Chem. 180 (1994) 139 - 144.

DOI: 10.1007/bf02039912

Google Scholar

[32] H.S. Virk, Single activation energy model of radiation damage in SSNTDs, Radiat. Eff. Def. in Solids 133 (1995) 87-95.

Google Scholar

[33] G.S. Randhawa and H.S. Virk, Thermal annealing of latent tracks in soda and BP-1 phosphate glasses, Appl. Radiat. Isot. 48 (1997) 447-451.

DOI: 10.1016/s0969-8043(96)00286-2

Google Scholar

[34] R.K. Jain, G.S. Randhawa, S.K. Bose and H.S. Virk, Study of etching and annealing characteristics of 238U ion tracks in Trifol-TN polycarbonate, J. Phys D: Appl. Phys. 31 (1997) 328-333.

DOI: 10.1088/0022-3727/31/3/012

Google Scholar

[35] R.K. Jain, G.S. Randhawa, S.K. Bose and H.S. Virk, Etching and annealing kinetics of 238U ion tracks in Makrofol-N plastic, Nucl. Instrum. Meth. Phys. Res. B 140 (1998) 367-372.

DOI: 10.1016/s0168-583x(98)00011-1

Google Scholar

[36] D. Storzer and G.A. Wagner, Correction of Thermally Lowered Fission Track Ages of Tektites, Earth Planet. Sci. Lett. 5 (1969) 463-468.

DOI: 10.1016/s0012-821x(68)80080-9

Google Scholar

[37] H.A. Khan and S.A. Durrani, The annealing of latent damage trails in solid-state nuclear track detectors, Nucl. Instrum. Meth. 113 (1973) 51-54.

DOI: 10.1016/0029-554x(73)90476-x

Google Scholar

[38] K.K. Nagpal, P.P. Mehta and M.L. Gupta, Annealing studies on radiation damages in biotite, apatite and sphene and corrections to fission track ages, Pure Appl. Geophys. 112 (1974a) 131-139.

DOI: 10.1007/bf00875927

Google Scholar

[39] K.K. Nagpal, P.P. Mehta and M.L. Gupta, (1974a): Fission track ages of cogenetic minerals of the Nellore mica belt of India, Pure Appl. Geophys. 112 (1974b) 140-148.

DOI: 10.1007/bf00875928

Google Scholar

[40] S.K. Modgil, H.S. Virk, Track annealing studies in glasses and minerals, Nucl. Track Radiat. Meas. 8(1-4) (1984) 355-360.

DOI: 10.1016/0735-245x(84)90120-0

Google Scholar

[41] H.S. Virk and S.L. Koul, Annealing   characteristics of induced fission tracks in micaceous minerals, Curr. Sci. 44 (1975) 341-342.

Google Scholar

[42] H.S. Virk and S. Singh, Annealing correction to fission track ages of biotites, Ind. J. Pure Appl. Phys. 14 (1976) 421-422.

Google Scholar

[43] S. Singh and H.S. Virk, Annealing correction to the fission track ages of phlogopites, Curr. Sci. 46 (1977) 376-378.

Google Scholar

[44] S.L. Koul and H.S. Virk, Thermal annealing behaviour of fission tracks in apatite crystal found at Borra mine, Vishakhapatnam District (India), Mineralogical J. (Japan) 9 (1978) 55-63.

DOI: 10.2465/minerj.9.55

Google Scholar

[45] G. Poupeau, J. Carpena, A. Chambaudet, and Ph. Romary, Fission track plateau-age dating, In: H. Francois et al. (eds. ), Proceedings of Solid State Nuclear Track Detectors Conference, Lyon (1979), Pergamon Press, Oxford, 1980, pp.966-977.

DOI: 10.1016/b978-0-08-025029-8.50123-2

Google Scholar

[46] S. Singh, P.S. Suri and H.S. Virk, Correction for thermally affected fission tracks in glass (obsidian) by age plateau method, Curr. Sci. 50 (1981) 626-627.

Google Scholar

[47] G.A. Wagner and P. Van den Haute, Fission Track Dating, Springer, 1992, pp.1-285. ISBN: 978-94-010-5093-7 (Print) 978-94-011-2478-2 (Online).

DOI: 10.1007/978-94-011-2478-2_3

Google Scholar

[48] R.L. Fleischer, P.B. Price, E.M. Symes and D.S. Miller, Fission track ages and track annealing behaviour of some micas, Science 143 (1964) 349-351.

DOI: 10.1126/science.143.3604.349

Google Scholar

[49] R.L. Fleischer, P.B. Price and R.M. Walker, Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses, J. Geophys. Res. 70 (1965) 1497-1502.

DOI: 10.1029/jz070i006p01497

Google Scholar

[50] D. Storzer, Fission track dating of volcanic glasses and the thermal history of rocks, Earth Planet. Sci. Lett. 8 (1070) 55-60.

DOI: 10.1016/0012-821x(70)90099-3

Google Scholar

[51] C.W. Naeser, J.C. Engels and F.C.W. Dodge, Fission track annealing and age determination of epidote minerals, J. Geophys. Res. 75 (1970) 1579-1584.

DOI: 10.1029/jb075i008p01579

Google Scholar

[52] C.W. Naeser, Fission-track dating and geologic annealing of fission tracks, in: E. Jager and J. C. Hunziker (eds. ), Lectures in Isotope Geology, Springer-Verlag, Heidelberg, pp.154-169.

DOI: 10.1007/978-3-642-67161-6_10

Google Scholar

[53] S.A. Durrani and H.A. Khan, Annealing of fission tracks in tektites: corrected ages of bediasites, Earth Planet Sci. Lett. 9 (1970) 431-445.

DOI: 10.1016/0012-821x(70)90010-5

Google Scholar

[54] E. Bertal, T.D. Mark and M. Pahl, A new method for the measurement of the mean etchable fission track length and of extremely high fission track densities in minerals, Nucl. Track Detection 1 (1970) 123-126.

DOI: 10.1016/0145-224x(77)90005-9

Google Scholar

[55] G.M. Reimer, G.A. Wagner and B.S. Carpenter, The thermal stability of fission tracks in the standard reference material glass standard (National Bureau of Standards), Radiat. Effects 15 (1972) 273-274.

DOI: 10.1080/00337577208234703

Google Scholar

[56] J. Burchart, T. Butkiewicz, M. Dakowski, and J. Galazka-Friedman, Fission track retention in minerals as a function of heating time during isothermal experiments: a discussion, Nucl. Tracks 3 (1979) 109-117.

DOI: 10.1016/0191-278x(79)90003-9

Google Scholar

[57] T.D. Mark, R. Vartanian, F. Purtscheller and M. Pahl, Fission track annealing and application to the dating of Austrian sphene, Acta Phys. Austriaca 53 (1981) 45-59.

Google Scholar

[58] P.P. Mehta, and Rama, Annealing effects in muscovite and their influence on dating by fission track method, Earth Planet. Sci. Lett. 7 (1969) 82-86.

DOI: 10.1016/0012-821x(69)90017-x

Google Scholar

[59] L.C. Calk, and C.W. Naeser, The thermal effect of a basalt intrusion on fission tracks in quartz monzonite, J. Geol. 81 (1973) 189-198.

DOI: 10.1086/627834

Google Scholar

[60] Y. Cantelaube, Thermal fading of fission tracks at variable temperature: Applications to geochronology, Nucl. Tracks 6(4 (1982) 143-160.

DOI: 10.1016/0735-245x(82)90013-8

Google Scholar

[61] W. Gentner, D. Storzer and G.A. Wagner, New fission track ages of tektites and related glasses, Geochim. Cosmochim. Acta 33 (1969) 1075-1081.

DOI: 10.1016/0016-7037(69)90063-5

Google Scholar

[62] S.A. Durrani, and R.K. Bull, Solid State Nuclear Track Detection (Principles, Methods and Applications), Pergamon Press, Oxford, (1987).

Google Scholar

[63] C.W. Naeser and H. Faul, Fission-Track Annealing in Apatite and Sphene, J. Geophys. Res. 74 (1969) 705-710.

DOI: 10.1029/jb074i002p00705

Google Scholar

[64] E. Mark, M. Pahl, F. Purtscheller and T.D. Mark, Thermische Ausheilung von UranSpaltspuren in Apatiten, Alterskorrekturen und Beitrage zur Geothermochronologie, Tschermarks Min. Petr. Mitt. 20 (1973) 131-154.

DOI: 10.1007/bf01081388

Google Scholar

[65] M.S.M. Mantovani, Variations of characteristics of fission tracks in muscovites by thermal effects, Earth Planet. Sci. Lett. 24 (1974) 311-316.

DOI: 10.1016/0012-821x(74)90110-1

Google Scholar

[66] R. Gold, J.H. Roberts and F.H. Ruddy, Annealing phenomena in solid state track recorders, Nucl. Tracks 5 (1981) 253-264.

DOI: 10.1016/0191-278x(81)90003-2

Google Scholar

[67] E. Dartyge, Ph.D. Thesis, Univeristeꞌ de Paris XI, Orsay, 1979 (unpublished).

Google Scholar

[68] E. Mark and T.D. Mark, Comments on the paper entitled 'Fission track retention in minerals as a function of heating time during isothermal experiments', by Burchart et al., Nucl. Tracks 5 (1981) 325-328.

DOI: 10.1016/0191-278x(81)90012-3

Google Scholar

[69] E. Mark and T.D. Mark, Fission track temperature age theory, Nucl. Tracks Suppl. 3 (1982) 389-394.

DOI: 10.1016/b978-0-08-026509-4.50085-4

Google Scholar

[70] E. Dartyge, J.P. Daraud, Y. Langevin and M. Maurette, New model of nuclear particle tracks in dielectric minerals, Phys. Rev. B23 (1981) 5213-5229.

DOI: 10.1103/physrevb.23.5213

Google Scholar

[71] G. J. Dienes and A. C. Damask, Point Defects in Metals, Gordon and Breach Sci. Publishers, N. York, (1963).

Google Scholar

[72] P.F. Green, I.R. Duddy, A.J.W. Gleadow, P.R. Tingate and G.M. Laslett, Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chemical Geology 59 (1986) 237-253.

DOI: 10.1016/0168-9622(86)90074-6

Google Scholar

[73] G.M. Laslett, P.F. Green, I.R. Duddy and A.J.W. Gleadow, Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chemical Geology 65 (1987) 1-13.

DOI: 10.1016/0168-9622(87)90057-1

Google Scholar

[74] M. H. Salamon, P. B. Price and J. Drach, Thermal annealing of nuclear tracks in polycarbonate plastic, Nucl. Instrum. Meth. Phys. Res. B17 (1986) 173-176.

Google Scholar

[75] P.F. Green, I.R. Duddy, A.J.W. Gleadow and P.R. Tingate, Fission-track annealing in apatite: track length measurements and the form of Arrhenius plot, Nucl. Tracks 10 (1985) 323-328.

DOI: 10.1016/0735-245x(85)90121-8

Google Scholar

[76] K.K. Sharma, K.D. Bal, R. Prashad, Nand Lal and K.K. Nagpal, Palaeo-uplift and cooling rates from various orogenic belts of India, as revealed by radiometric ages, Tectonophysics 70 (1980) 135.

DOI: 10.1016/0040-1951(80)90024-4

Google Scholar

[77] J. Carpena, U. Pognante and B. Lombardo, New constraints for the timing of the alpine metamorphism in the internal ophiolitic nappes from the western Alps as inferred from fission- track data, Tectnonophysics 127 (1986) 117-127.

DOI: 10.1016/0040-1951(86)90082-x

Google Scholar

[78] M. Dakowski,J. Burchart and J. Galazka, Experimental formula for thermal fading of fission tracks in minerals and natural glasses, Bull. Acad. Polan. Sci., Ser. Sci. Terre 22 (1974) 11-17.

Google Scholar

[79] T.D. Mark, M. Phal and R. Vartanian, Fission track annealing and fission track age- temperatrue relationship in sphene. Nucl. Technol. 52 (1981) 295-305.

DOI: 10.13182/nt81-a32672

Google Scholar

[80] P.B. Price, G. Gerbier, H.S. Park and M.H. Salamon, Systematics of annealing of tracks of relativistic nuclei in phosphate glass detectors, Nucl. Instrum. Methd. Phys. Res. B27 (1987) 53-55.

DOI: 10.1016/0168-583x(87)90035-8

Google Scholar

[81] H.S. Virk, S.K. Modgil and G. Singh, Fission track annealing models and the concept of a single activation energy, Nucl. Instrum. Meth. Phys. Res. B 21 (1987) 68-71.

Google Scholar

[82] H.A. Khan, N.A. Khan, K. Jamil and R. Brandt, Annealing of Heavy Ion Latent Damage Trails in Muscovite Mica and CR-39 Plastic Track Detectors, Nucl. Tracks Radiat Meas. 8 (1-4) (1984) 377-380.

DOI: 10.1016/0735-245x(84)90124-8

Google Scholar

[83] M.A. Rana, I.E. Qureshi, S. Manzoor, E.U. Khan, M.I. Shahzad, G. Sher, Activation energy for the annealing of nuclear tracks in SSNTDs, Nuclear Instruments and Methods in Physics Research B 179 (2001) 249-254.

DOI: 10.1016/s0168-583x(01)00574-2

Google Scholar

[84] M.A. Rana, I.E. Qureshi, E.U. Khan, S. Manzoor, M.I. Shahzad, H.A. Khan, Thermal annealing of fission fragment radiation damage in CR-39, Nucl. Instr. and Meth. B 170 (2000) 149-155.

DOI: 10.1016/s0168-583x(00)00154-3

Google Scholar

[85] M.K. Rahn, M.T. Brandon, G.E. Batt, J.I. Garver, A zero-damage model for fission track annealing in zircon, American Mineralogist 89 (4) (2004) 473-484.

DOI: 10.2138/am-2004-0401

Google Scholar

[86] R.F. Galbraith, and G.M. Laslett, Statistical modelling of thermal annealing of fission tracks in zircon. Chemical Geology, 140 (1997) 123–135.

DOI: 10.1016/s0009-2541(97)00016-8

Google Scholar

[87] T. Tagami, R.F. Galbraith, R. Yamada, G.M. Laslett, (1998).

Google Scholar

[88] R. Yamada, T. Tagami, S. Nishimura, H. Ito, H. Annealing kinetics of fission tracks in zircon: an experimental study. Chemical Geology, 122 (1995) 249–258.

DOI: 10.1016/0009-2541(95)00006-8

Google Scholar