Structural and Magnetic Properties of Mn-Zn Ferrites Synthesized by Microwave-Hydrothermal Process

Article Preview

Abstract:

Nanocrystalline Mn1-xZnxFe2O4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites have been successfully synthesised using microwave–hydrothermal method for high frequency applications. The nanopowders were characterised using X-ray diffraction (XRD) and sintered using microwave furnace at 900°C and the total time taken for sintering is 30 min. The frequency dependence of real and imaginary part of permeability were measured in the range 1 MHz to 1.8 GHz. The saturation magnetisation and coercive force were obtained using a vibration sample magnetometer (VSM) in the field of 1.5 T. The temperature dependence of initial permeability (μi) was measured in the temperature range of 300K to 600K at 10 kHz. The high values of permeability and saturation magnetization enables these materials to be the potential candidates for a number of applications, for example, in transformers, choke coils, noise filters and recording heads.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

45-64

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] J. Smit, H.P.J. Wijn. Ferrites, Philips Technical Library, Eindhoven, (1959).

Google Scholar

[2] S. Hilpert, Ber. Deut. Chem. Ges. 42 (1909) 2247.

Google Scholar

[3] M.M. Barakat, M.A. Henaish, S. A Olofa, A. Tawfik. Piezoelectric effect and current-voltage relation in sodium benzoylacetonate polycrystal, J Thermal Analysis, 37 (1991) 605-611.

DOI: 10.1007/bf01913112

Google Scholar

[4] A. Goldman. Modern Ferrite Technology. Van Nostrand Reinhold, New York, (1990).

Google Scholar

[5] K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Development of nanocrystalline Mn–Zn ferrites for forward type DC–DC converter for switching mode power supplies, Materials Research Innovations 14 (1) (2010) 56-61.

DOI: 10.1179/143307510x12599329343727

Google Scholar

[6] R. Valenzuela. Magnetic Ceramics, Cambridge University Press, UK, (1994).

Google Scholar

[7] E.S. Murdock, R.F. Simmons. Roadmap for 10 Gbit/in2 media: Challenges. IEEE Trans. Magnetic 28(5) (1992) 3078-3083.

DOI: 10.1109/20.179719

Google Scholar

[8] C. Kittel, Introduction to Solid State Physics, Seventh Edition. John Wiley & Sons, Inc., New York, (1996).

Google Scholar

[9] J.I. Gersten, and F.W. Smith, The Physics and Chemistry of Materials, John Wiley & Sons, Inc., New York, (2001).

Google Scholar

[10] T. Nakamura and K. Hatakeyama, Complex Permeability of Polycrystalline Hexagonal Ferrites, IEEE Trans. Mag. 36 (2000) 3415-3417.

DOI: 10.1109/20.908844

Google Scholar

[11] H. Tsunekawa, A. Nakata, T. Kamijo, K. Okutani, R.K. Mishra, G. Thomas, Microstructure and Properties of Commercial Grade Manganese Zinc Ferrites, IEEE Trans. Mag. 15 (1979) 1855-57.

DOI: 10.1109/tmag.1979.1060382

Google Scholar

[12] A. Žnidaršič, M. Limpel, M. Drofenik, Effect of Dopants on the Magnetic Properties of MnZn Ferrites for High Frequency Power Supplies, IEEE Trans. Mag, 31(2) (1995) 950-953.

DOI: 10.1109/20.364767

Google Scholar

[13] Soon Cheon Byeon, Hae June Je and Kug Sun Hong, Microstructural Optimization of Low-Temperature-Fired Ni–Zn–Cu Ferrites Using Calcination, Jpn. J. Appl. Phys, 36 (1997) 5103-5108.

DOI: 10.1143/jjap.36.5103

Google Scholar

[14] K. Praveena, K.B.R. Varma, Ferroelectric and optical properties of Ba5Li2Ti2Nb8O30 ceramics potential for memory applications Journal of Materials Science: Materials in Electronics 25, (2014) 3103–3108.

DOI: 10.1007/s10854-014-1990-3

Google Scholar

[15] Jean-Marie Le Breton, Luc Lechevallier, Jian Feng Wang, Rex Harris, Structural analysis of co-precipitated Sr1−xLaxFe12−xCoxO19 powders, J. Magn. Magn. Mater. 272– 276 (2004) 2214–2215.

DOI: 10.1016/j.jmmm.2003.12.1201

Google Scholar

[16] K. Praveena, B. Radhika, S. Srinath, Dielectric and Magnetic Properties of NiFe2-xBixO4 Nanoparticles at Microwave Frequencies Prepared via co-precipitation Method Procedia Engineering 76 (2014) 1-7.

DOI: 10.1016/j.proeng.2013.09.244

Google Scholar

[17] Malick Jean, Virginie Nachbaur, Julien Bran, Jean-Marie Le Breton, Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process, J. Alloys. Comp, 496 (2010) 306-312.

DOI: 10.1016/j.jallcom.2010.02.002

Google Scholar

[18] K. Praveena, S. Srinath, Effect of Gd3+ on dielectric and magnetic properties of Y3Fe5O12, J. Magn. Magn. Mater. 349 (2014) 45-50.

DOI: 10.1016/j.jmmm.2013.08.035

Google Scholar

[19] K. Praveena, K.B.R. Varma, Improved magneto-electric response in Na0. 5Bi0. 5TiO3– MnFe2O4 composites, J. Mater. Sci. Mater. Electron. 25 (2014) 111–116.

DOI: 10.1007/s10854-013-1557-8

Google Scholar

[20] K. Sadhana, R. Sandhya, K. Praveena, DC-Bias-Superposition Characteristics of Ni0. 4Zn0. 2Mn0. 4Fe2O4 Nanopowders Synthesized by Auto-Combustion Journal of Nanoscience and Nanotechnology 15(6) (2015) 4552-4557.

DOI: 10.1166/jnn.2015.9809

Google Scholar

[21] Praveena Kuruva, Uma Maheshwara Singh Rajaputra, Srinath Sanyadanam, Ramana Murthy Sarabu, Effect of microwave sintering on grain size and dielectric properties of barium titanate, Turkish Journal of Physics, 37 (2013) 312-321.

DOI: 10.3906/fiz-1303-4

Google Scholar

[22] K. Praveena, K. Sadhana, S. Srinath, S.R. Murthy, Effect of TiO2 on electrical and magnetic properties of Ni0. 35Cu0. 12Zn0. 35Fe2O4 synthesized by the microwave–hydrothermal method, J. Phys. Chem. Solids 74 (2013) 1329–1335.

DOI: 10.1016/j.jpcs.2013.04.014

Google Scholar

[23] K. Praveena, K. Sadhana, S.R. Murthy, Microwave-hydrothermal synthesis of Ni0. 53Cu0. 12Zn0. 35Fe2O4/SiO2 nanocomposites for MLCI Integrated Ferroelectrics, 119(1) (2010) 122-134.

DOI: 10.1080/10584587.2010.503791

Google Scholar

[24] Sadhana Katlakunta, Sher Singh Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route, Materials Research Bulletin 63 (2015) 58–66.

DOI: 10.1016/j.materresbull.2014.11.043

Google Scholar

[25] J.R. Mac Ewan, Proc. Brit. Ceram. Soc. 3 (1965) 223.

Google Scholar

[26] B.D. Culity, Elements of X-ray diffraction, Addison-Wesley Publishing Company, Inc., USA, (1967).

Google Scholar

[27] K. Praveena, S. Srinath, The effect of Sb on the electrical and magnetic properties of Ni- Zn ferrites prepared by sol–gel auto-combustion method, J. Electro-ceramics, 31 (1-2) (2013)168-175.

DOI: 10.1007/s10832-013-9840-x

Google Scholar

[28] J.L. Snoek, Physica XIV 4 (1948) 207.

Google Scholar

[29] K. Praveena, S. Srinath, Dielectric and Magnetic Properties of NiFe2−xBixO4 Nanoparticles, Advanced Science, Engineering and Medicine, 6(3) (2014) 359-365.

DOI: 10.1016/j.proeng.2013.09.244

Google Scholar

[30] George T Rado, Magnetic Spectra of Ferrites, Reviews of Modern Physics 25(1) (1953) 81-89.

Google Scholar

[31] T. Nakumura, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra, J. Magn. Magn. Mater. 168 (3) (1997) 285-291.

Google Scholar

[32] T. Nakamura. T. Tsutaoka and K. Hatakeyama, Frequency dispersion of permeability in ferrite composite materials, J. Magn. Magn. Mater. 138 (1994) 319-328.

DOI: 10.1016/0304-8853(94)90054-x

Google Scholar

[33] Y. Naito, ICF, Tokyo, Japan (1933) 558.

Google Scholar

[34] A. Globus, H. Pascard, V. Cagan, Distance between Magnetic Ions and Fundamental Properties in Ferrites, J. de. Physique (Paris) 38 (1977) C1-163-168.

DOI: 10.1051/jphyscol:1977132

Google Scholar

[35] R.F. Soohoo, Theory and application of ferrites, Prentice- Hall, USA, (1960).

Google Scholar

[36] Zhenxing Yue, Ji Zhou, Xiaohui Wang, Zhilun Gui, Longtu Li, Low-temperature sintered Mg-Zn-Cu ferrite prepared by auto-combustion of nitrate-citrate gel, J Mater. Sci. Lett. 20 (4) (2001) 1327-1329.

Google Scholar

[37] Xiao-Hui Wang, Tian-Ling Ren, Long-Yu Li, Lian-Sheng Zhang, Preparation and magnetic properties of BaZn2−xCoxFe16O27 nanocrystalline powders, J. Magn. Magn. Mater. 184 (1998) 95-100.

DOI: 10.1016/s0304-8853(97)01060-3

Google Scholar

[38] M.A. Amer, Mossbauer, Infrared, and X-Ray Studies of the Mn-Zn Ferrites, Phys. Status Solidi A 151(1) (1995) 205-214.

DOI: 10.1002/pssa.2211510124

Google Scholar

[39] J.M.D. Coey, Noncollinear spin structures, Canadian J. Phys. 65 (1987) 1210-1232.

DOI: 10.1139/p87-197

Google Scholar

[40] Q.A. Pankhurst and R.J. Polland, Origin of the spin-canting anomaly in small ferrimagnetic particles, Phys. Rev. Lett. 67(2) (1991) 248-250.

DOI: 10.1103/physrevlett.67.248

Google Scholar

[41] D. Vollath, D.V. Szabu, R.D. Taylor, and J.O. Willis, Synthesis and Magnetic Properties of Nanostructured Maghemite, Journal of Materials Research 12 (1997)2175-2182.

DOI: 10.1557/jmr.1997.0291

Google Scholar

[42] A.H. Morrish, Z.W. Li, and Z.X. Zhou, Origin of Elevated Ordering Temperature in MnFe2O4 Nanometer Particles, 7th International Conference on Ferrites, J. de Phyique (Paris) 7 (1997) p. C1-513.

DOI: 10.1051/jp4:19971209

Google Scholar

[43] Montserrat García del Muro, Xavier Batlle and Amílcar Labarta, Erasing the glassy state in magnetic fine particles, Phys. Rev. B 59 (1999) 13584-13587.

DOI: 10.1103/physrevb.59.13584

Google Scholar

[44] Q. Chen, Z.J. Zhang, Size-dependent super-paramagnetic properties of MgFe2O4 spinel ferrite nanocrystallites, Appl. Phys. Lett, 73 (21) (1998) 3156-3158.

DOI: 10.1063/1.122704

Google Scholar

[45] A.F. Bakuzis, P.C. Morais, On the origin of the surface magnetic anisotropy in manganese–ferrite nanoparticles, J. Magn. Magn. Mater. 226-230 (2001) 1924-(1926).

DOI: 10.1016/s0304-8853(00)00664-8

Google Scholar

[46] C. Rath, K.K. Sahu, S. Anand, S.K. Date, N.C. Mishra, R.P. Das, Preparation and characterization of nanosize Mn–Zn ferrite, J. Magn. Magn. Mater. 202(1) (1999) 77- 84.

DOI: 10.1016/s0304-8853(99)00217-6

Google Scholar

[47] D. J. Craik, Magnetic Oxides, Part 1, Wiley, New York, (1975).

Google Scholar

[48] P. Yaseneva, M. Bowker, G. Hutchings, Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method, Phys. Chem. Chem. Phys, 13 (2011) 18609-18614.

DOI: 10.1039/c1cp21516g

Google Scholar

[49] S. Kumar, A. Sharma, M. Singh and S. P. Sharma, Archives of Physics Research 5 (2014) 18-4 (http: /scholarsresearchlibrary. com/archive. html).

Google Scholar