Ensembles of γ-Fe2O3 Nanoparticles Formed during Devitrification of Borate Glasses

Article Preview

Abstract:

Structural, magnetic and magneto-optical properties of borate glasses co-doped with Fe and the lager radius ions are presented. Maghemite, γ-Fe2O3, nanoparticles arise in the glasses as a result of their thermal treatment in different regimes. Magnetization FC and ZFC temperature dependences demonstrate the superparamagnetic behavior of the particles with the blocking temperature below the room temperature. The EMR spectra measurements revealed a significant anisotropy with a large contribution of the nanoparticles’ surface anisotropy. The FR maximum centered near 700 nm is a characteristic feature of the investigated glasses.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

173-178

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] S.B. Wang, Y.L. Min, S.H. Yu, Journal of Physical Chemistry C 111 (9) (2007) 3551.

Google Scholar

[2] T. Hyeon, Chemical Communications 8 (2003) 927.

Google Scholar

[3] A.S. Teja, P-Y. Koh, Prog. Cryst. Growth Charact., 55 (2009) 22.

Google Scholar

[4] H. Akamatsu, J. Kawabata, K. Fujita, Sh. Murai, K. Tanaka, Phys. Rev. B 84 (2011) 144408.

Google Scholar

[5] R Harizanova, I. Gugov, C. Russel, D. Tatchev, V.S. Raghuwanshi, A. Hoell, J. Mater. Sci. 46 (2011) 7169.

DOI: 10.1007/s10853-011-5840-x

Google Scholar

[6] I. Edelman, O. Ivanova, R. Ivantsov, D. Velikanov, V. Zabluda, Y. Zubavichus, A. Veligzhanin, V. Zaikovskiy, S. Stepanov, A. Artemenko, J. Curély, J. Kliava, J. Appl. Phys. 112 (2012) 084331.

DOI: 10.1063/1.4759244

Google Scholar

[7] S.A. Stepanov, I.S. Edelman, T.A. Kim, G.T. Petrovskii, and G.V. Popov, Phys. Stat. Sol. (a) 104 (1987) 805.

Google Scholar

[8] J. Kliava, I. Edelman, O. Ivanova, R. Ivantsov, O. Bayukov, E. Petrakovskaja, V. Zaikovskiy, I. Bruckental, Y. Yeshurunand S. Stepanov, J. Appl. Phys. 104 (2008) 103917.

DOI: 10.1063/1.3021289

Google Scholar

[9] A.A. Chernyshov, A.A. Veligzhanin, Y.V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A 603 (2009) 95.

Google Scholar

[10] H. Wang, J. Shen, J. Qian, JMMM 73 (1988) 103.

Google Scholar

[11] H. Guerrero, G. Rosa, M.P. Morales, F. del Monte, E.M. Moreno, D. Levy, R. Pe´rez del Real, T. Belenguer, C.J. Serna, Appl. Phys. Lett. 71 (1997) 2698.

DOI: 10.1063/1.120181

Google Scholar

[12] R. Berger, J. Kliava, J. -C. Bissey, J. Appl. Phys. 87 10 (2000) 7389.

Google Scholar

[13] N. Noginova, F. Chen, T. Weaver, E.P. Giannelis, A.B. Bourlinos, V.A. Atsarkin, J. Phys. Condens. Matter 19 (2007) 246208.

DOI: 10.1088/0953-8984/19/24/246208

Google Scholar

[14] R.J. Usselman, S.E. Russek, M.T. Klem, M.A. Allen, T. Douglas, M. Young, Y.U. Idzerda, D.J. Singel, J. Appl. Phys. 112 (2012) 084701.

DOI: 10.1063/1.4757964

Google Scholar

[15] Y. L. Raikher and V. I. Stepanov, Phys. Rev. B 50 (9) (1994) 6250.

Google Scholar

[16] I. Ardelean, M. Peteanu, S. Filip, V. Simon, G. Gyorgy. Solid State Commun. 102 (1997) 341.

Google Scholar