Molecular Mechanism of Water Oxidation Reaction at Photo-Irradiated TiO2 and Related Metal Oxide Surfaces

Article Preview

Abstract:

Recent studies on the molecular mechanism of water photooxidation (or oxygen photoevolution) reaction on TiO2 and related metal oxides or oxynitrides are reviewed. It is shown that a lot of experimental and theoretical studies give definite support to our recently proposed new mechanism, called “nucleophilic attack of H2O” or “Lewis acid-base” mechanism. The new mechanism has the prominent features that it possesses energetic and kinetics different from the conventional electron-transfer mechanism and can explain water photooxidation reaction on visible-light responsive metal oxides or oxynitrides, contrary to the conventional one. The result indicates that the new mechanism is useful for searching for new efficient visible-light responsive materials for solar water splitting.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 162)

Pages:

1-27

Citation:

Online since:

June 2010

Export:

Price:

[1] A. Fujishima and K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen: Nature Vol. 440 (2006), p.295.

DOI: 10.1038/440295a

Google Scholar

[3] D. S. Ollis and H. Al-Ekabi: Photocatalytic Purification and Treatment of Water and Air (Elsevier, Amsterdam 1992).

Google Scholar

[4] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

Google Scholar

[5] A. Fujishima, T. N. Rao and D. A. Tryk: J. Photochem. Photobiol., C: Photochem. Rev. Vol. 1 (2000), p.1.

Google Scholar

[6] R. H. Wilson: J. Electrochem. Soc. Vol. 127 (1980), p.228.

Google Scholar

[7] P. Salvador and C. Gutiérrez: Chem. Phys. Lett. Vol. 86 (1982), p.131.

Google Scholar

[8] P. Salvador and C. Gutiérrez: Surf. Sci. Vol. 124 (1983), p.398.

Google Scholar

[9] P. Salvador and C. Gutiérrez: J. Electroanal. Chem. Vol. 160 (1984), p.117.

Google Scholar

[10] P. Salvador and C. Gutiérrez: J. Phys. Chem. Vol. 88 (1984), p.3696.

Google Scholar

[11] Y. Nakato, A. Tsumura and H. Tsubomura: Chem. Phys. Lett. Vol. 85 (1982), p.387.

Google Scholar

[12] Y. Nakato, A. Tsumura and H. Tsubomura: J. Phys. Chem. Vol. 87 (1983), p.2402.

Google Scholar

[13] Y. Nakato, H. Ogawa, K. Morita and H. Tsubomura: J. Phys. Chem. Vol. 90 (1986), p.6210.

Google Scholar

[14] C. D. Jaeger and A. J. Bard: J. Phys. Chem. Vol. 83 (1979), p.3146.

Google Scholar

[15] P. F. Schwarz. N. J. Turro, S.H. Bossmann, A. M. Braun, A. -M. A. Wahab and H. Dürr: J. Phys. Chem. B Vol. 101 (1997), p.7127.

Google Scholar

[16] Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa and Y. A. Nosaka: Phys. Chem. Chem. Phys. Vol. 5 (2003), p.4731.

DOI: 10.1039/b307433a

Google Scholar

[17] M. Anpo, T. Shima and Y. Kubokawa: Chem. Lett. (1985), p.1799.

Google Scholar

[18] R. F. How and M. Gräetzel: J. Phys. Chem. Vol. 91 (1987), p.3906.

Google Scholar

[19] O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac and M. C. Thurnauer: J. Phys. Chem. Vol. 97 (1993), p.7277.

Google Scholar

[20] M. Kaise, H. Kondoh, C. Nishihara, H. Nozoe, H. Shindo, S. Nimura and O. Kikuchi: J. Chem. Soc. Chem. Commun. (1993), p.395.

Google Scholar

[21] D. Lawless, N. Serpone and D. Meisel, J. Phys. Chem. Vol. 95 (1991), p.5166.

Google Scholar

[22] A. Yamakata, T. Ishibashi and H. Onishi: J. Mol. Cata. A. Vol. 199 (2003), p.85.

Google Scholar

[23] T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murate, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 108 (2004), p.3817.

DOI: 10.1021/jp031305d

Google Scholar

[24] T. Tachikawa, S. Tojo, Fujitsuka, T. Majima: Langmuir Vol. 20 (2004), p.2753.

Google Scholar

[25] S. Tojo, T. Tachikawa, Fujitsuka; T. Majima: Phys. Chem. Chem. Phys. Vol. 6 (2004), p.960.

Google Scholar

[26] I. A. Shkrob and M. C., Jr. Sauer: J. Phys. Chem. B Vol. 108 (2004), p.12497.

Google Scholar

[27] I. A. Shkrob, M. C., Jr. Sauer and D. Gosztola: J. Phys. Chem. B Vol. 108 (2004), p.12512.

Google Scholar

[28] T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara and R. Katoh: Chem. Phys. Lett. Vol. 438 (2007), p.268.

Google Scholar

[29] J. Fan and J. T. Jr. Yates, J. Am. Chem. Soc. Vol. 118 (1996), p.4686.

Google Scholar

[30] L. -F. Liao, C. -F. Lien, D. -L. Shieh, M. -T. Chen and J. -L. Lin: J. Phys. Chem. B Vol. 106 (2002), p.11240.

Google Scholar

[31] S. H. Szczepankiewicz, J. A. Moss and M. R. Hoffmann: J. Phys. Chem. B Vol. 106 (2002), p.7654.

Google Scholar

[32] R. Nakamura and S. Sato: Langmuir Vol. 18 (2002), p.4433.

Google Scholar

[33] R. Nakamura and S. Sato: J. Phys. Chem. B Vol. 106 (2002), p.5893.

Google Scholar

[34] A. Y. Nosaka, T. Fujiwara, H. Yagi, H. Akutsu and Y. Nosaka: Chem. Lett. (2002), p.420.

Google Scholar

[35] K. Domen, S. Naito, M. Soma, T. Onishi and K. Tamaru: Chem. Commun. (1980), p.543.

Google Scholar

[36] S. Sato and J. M. White: Chem. Phys. Lett. Vol. 72 (1980), p.83.

Google Scholar

[37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[38] Z. Zou, J. Ye, K. Sayama and H. Arakawa: Nature Vol. 414 (2001), p.625.

Google Scholar

[39] S. Sakthivel and H. Kisch: Angew. Chem. Int. Ed. Vol. 42 (2003), p.4908.

Google Scholar

[40] T. Ohno, T. Mitsui and M. Matsumura: Chem. Lett. Vol. 32 (2003), p.364.

Google Scholar

[41] A. Ishikawa, T. Takata, J. Kondo, M. Hara, H. Kobayashi and K. Domen: J. Am. Chem. Soc. Vol. 124 (2002), p.13547.

Google Scholar

[42] A. Kudo, K. Omori and H. Kato: J. Am. Chem. Soc. Vol. 121 (1999), p.11459.

Google Scholar

[43] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe and H. Arakawa: Chem. Commun. (2002), p.2908.

Google Scholar

[44] G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen: Chem. Commun. (2002), p.1698.

Google Scholar

[45] W. Chun, A. Ishikawa, H. Fujisawa, T. Takata, N. J. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B Vol. 107 (2003), p.1798.

Google Scholar

[46] R. Nakamura, T. Tanaka and Y. Nakato: J. Phys. Chem. B Vol. 108 (2004), p.10617.

Google Scholar

[47] R. Nakamura, T. Tanaka and Y. Nakato: J. Phys. Chem. B Vol. 109 (2005), p.8920.

Google Scholar

[48] H. M. Liu, R. Nakamura and Y. Nakato: Electrochem. Solid State Lett. Vol. 9 (2006), p. G187.

Google Scholar

[49] H. M. Liu, A. Imanishi and Y. Nakato: J. Phys. Chem. C Vol. 111 (2007), p.8603.

Google Scholar

[50] T. Kisumi, A. Tsujiko, K. Murakoshi and Y. Nakato: J. Electroanal. Chem. Vol. 545 (2003), p.99.

Google Scholar

[51] R. Nakamura and Y. Nakato: J. Am. Chem. Soc. Vol. 126 (2004), p.1290.

Google Scholar

[52] R. Nakamura, H. Ohashi, A. Imanishi, T. Osawa, Y. Matsumoto, H. Koinuma and Y. Nakato: J. Phys. Chem. B Vol. 109 (2005), p.1648.

Google Scholar

[53] R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi and Y. Nakato: J. Am. Chem. Soc. Vol. 127 (2005), p.12975.

Google Scholar

[54] A. Imanishi, T. Okamura, N. Ohashi, R. Nakamura and Y. Nakato: J. Am. Chem. Soc. Vol. 129 (2007), p.11569.

Google Scholar

[55] A. J. Bard and L. R. Faulkner: Electrochemical Methods Fundementals and Applications Second Edition (John Wiley & Sons, New York 2001).

Google Scholar

[56] W. Kubo and T. Tatsuma: J. Am. Chem. Soc. Vol. 128 (2006), p.16034.

Google Scholar

[57] Y. Murakami, E. Kenji, A. Y. Nosaka and Y. Nosaka: J. Phys. Chem. B Vol. 110 (2006), p.16808.

Google Scholar

[58] K. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto: J. Photochem. Photobiol. A Vol. 134 (2000), p.139.

Google Scholar

[59] I. M. Brookes, C. A. Muryn and G. Thornton: Phys. Rev. Lett. Vol. 87 (2001), p.266103.

Google Scholar

[60] C. A. Muryn, P. J. Hardman, J. J. Crouch, G. N. Raiker, G. Thornton and D. S. Law: Surf. Sci. Vol. 215-242 (1991), p.747.

Google Scholar

[61] M. A. Henderson: Surf. Sci. Rep. Vol. 46 (2002), p.1.

Google Scholar

[62] P. Salvador: J. Phys. Chem. C. Vol. 111 (2007), p.17038.

Google Scholar

[63] C. D. Valentin and G. Pacchioni: Phys. Rev. Lett. Vol. 97 (2006), p.166803(1)-(4).

Google Scholar

[64] Y. Nakato, H. Akanuma, J. -I. Shimizu and Y. Magari: J. Electroanal. Chem. Vol. 396 (1995), p.35.

Google Scholar

[65] Y. Magari, H. Ochi, S. Yae and Y. Nakato: ACS Symposium Series No. 656, Solid/Liquid Electrochemical Interfaces (1996), p.297.

Google Scholar

[66] Y. Nakato, H. Akanuma, Y. Magari, S. Yae, J. -I. Shimizu and H. Mori: J. Phys. Chem. B Vol. 101 (1997), p.4934.

Google Scholar

[67] A. Tsujiko, T. Kisumi, Y. Magari, K. Murakoshi and Y. Nakato: J. Phys. Chem. B Vol. 104 (2000), p.4873.

Google Scholar

[68] R. Nakamura, A. Imanishi, K. Murakoshi and Y. Nakato: J. Am. Chem. Soc. Vol. 125 (2003), p.7443.

Google Scholar

[69] K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York 1986).

Google Scholar

[70] W. Lin and H. Frei: J. Am. Chem. Soc. Vol. 124 (2002), p.9293.

Google Scholar

[71] S. Sato, J. Phys. Chem. Vol. 91 (1987), p.2895.

Google Scholar

[72] U. Diebold: Surf. Sci. Rep. Vol. 48 (2003), p.53.

Google Scholar

[73] H. Uetsuka, A. Sasahara and H. Onishi, Langmuir Vol. 20 (2004), p.4782.

Google Scholar

[74] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma: Science Vol. 266 (1994), p.1540.

DOI: 10.1126/science.266.5190.1540

Google Scholar

[75] Y. Yamamoto, Y. Matsumoto and H. Koinuma, Appl. Surf. Sci. Vol. 238 (2004), p.189.

Google Scholar

[76] Y. Namai and O. Matsuoka : J. Phys. Chem. B Vol. 110 (2006), p.6451.

Google Scholar

[77] P. A. Connor, K. D. Dobson and A. J. McQuillan: Langmuir Vol. 15 (1999), p.2402.

Google Scholar

[78] A. Tsujiko, H. Itoh, T. Kisumi, A. Shiga, K. Murakoshi and Y. Nakato: J. Phys. Chem. B Vol. 106 (2002), p.5878.

Google Scholar

[79] R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J. K. Nørskov and F. Besenbacher, Phys. Rev. Lett. Vol. 87 (2001), p.266104.

Google Scholar

[80] A. J. Bard: Standard potentials in aqueous solution (Marcel Dekker Inc., 1985).

Google Scholar

[81] K. von Burg and P. Delahay: Chem. Phys. Lett. Vol. 78 (1981), p.287.

Google Scholar

[82] P. Delahay and K. von Burg: Chem. Phys. Lett. Vol. 83 (1981), p.250.

Google Scholar

[83] P. Wardman: J. Phys. Chem. Ref. Data Vol. 18 (1989), p.1637.

Google Scholar

[84] A. Shiga, A. Tsujiko, S. Yae and Y. Nakato: Bull. Chem. Soc. Jpn. Vol. 71 (1998), p.2119.

Google Scholar