Microstructure Characterization in Dissimilar TIG Welds of Inconel Alloy 718 and High Strength Tensile Steel

Article Preview

Abstract:

Nickel based super alloy Inconel 718 is widely used in aerospace and power generation industries. The dissimilar joining of high strength tensile steel to Inconel 718 was joined using TIG welding. The welding current and travel speed parameters were varied to identify the suitable welding conditions for achieving highest joint strength. Microstructural characterization of the weldments were evaluated by using optical, scanning electron microscope and energy dispersive spectroscopy analysis. The fracture surfaces of the tensile tested joints were investigated under scanning electron microscope to reveal the mode of fracture and its influence on the performance of the joints. Microhardness and tensile tests were conducted to evaluate mechanical properties of the joints. The microstructure evolution revealed that the formation of precipitates at the fusion boundary between the weld zone and Inconel 718 alloy. The hardness of the fusion boundary area id higher than the base metal and fusion zone on Inconel 718 side, whereas the highest hardness obtained in heat affected zone on high tensile strength steel. The strength of the joints were failed in the weld zone along the deposition of the filler metal, which strength is similar to the joint strength. The elemental line scan analysis confirmed the formation of Nb and Ti rich precipitates in weld zone and along the fusion boundary of Inconel alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-501

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] A. Thomas, M. El-Wahabi, J.M. Cabrera, J. M. Prado, High temperature deformation of Inconel 718. J. Mater. Process. Tech. 177 (2006) 469-472.

DOI: 10.1016/j.jmatprotec.2006.04.072

Google Scholar

[2] R. Cozar, A. Pineau, Morphology of γ' and γ'' precipitates and thermal stability of Inconel 718 type alloys, Metall. Trans. 4 (1973) 47-59.

DOI: 10.1007/bf02649604

Google Scholar

[3] P. Liu, F. Lu, X. Liu, H. Ji, Y. Gao, Study on fatigue property and microstructure characteristics of welded nuclear power rotor with heavy section. J. Alloys Compd. 584 (2014) 430-437.

DOI: 10.1016/j.jallcom.2013.09.048

Google Scholar

[4] S.H. Baghjari, S.A.A. AkbariMousavi Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to kovar alloy. Mater. Design, 57 (2014), 128-134.

DOI: 10.1016/j.matdes.2013.12.050

Google Scholar

[5] C.H. Muralimohan M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A. 47 (2016) 347-359.

DOI: 10.1007/s11661-015-3210-z

Google Scholar

[6] C.H. Muralimohan V. Muthupandi, K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Inter. J. Mater. Res. 105 (2014) 350-357.

DOI: 10.3139/146.111031

Google Scholar

[7] M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel, in: P.M. Pawar, B.P. Ronge, R. Balasubramaniam, S. Seshabhattar (Eds.), Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, ICATSA 2016, Springer, Cham, 2018, pp.709-717.

DOI: 10.1007/978-3-319-53556-2_73

Google Scholar

[8] M. Cheepu, V. Muthupandi, W.S. Che, Improving mechanical properties of dissimilar material friction welds, Appl. Mech. Mater. 877 (2018) 157-162.

DOI: 10.4028/www.scientific.net/amm.877.157

Google Scholar

[9] D. Krishnaja, M. Cheepu, D. Venkateswarlu, A review of research progress on dissimilar laser weld-brazing of automotive applications, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012073.

DOI: 10.1088/1757-899x/330/1/012073

Google Scholar

[10] M. Cheepu, M. Ashfaq, V. Muthupandi, A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel, Trans. Indian. Inst. Met. 70 (2017) 2591-2600.

DOI: 10.1007/s12666-017-1114-x

Google Scholar

[11] Z. Sun, J.C. Ion, Laser welding of dissimilar metal combinations, J. Mater. Sci. 30 17 (1995) 4205-4214.

DOI: 10.1007/bf00361499

Google Scholar

[12] M. Cheepu, V. Muthupandi, D. Venkateswarlu, B. Srinivas, W.S. Che, Interfacial Microstructures and Characterization of the Titanium-Stainless Steel Friction Welds Using Interlayer Technique, In: Parinov I., Chang SH., Gupta V. (eds) Advanced Materials. PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham (2018).

DOI: 10.1007/978-3-319-78919-4_21

Google Scholar

[13] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Joining of AISI 1040 steel to 6082-T6 aluminium alloy by friction welding, J. Adv. Mech. Eng. Sci. 1(1) (2015) 57-64.

DOI: 10.18831/james.in/2015011006

Google Scholar

[14] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia. Mater. Sci. 5 (2014) 1120-1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[15] M.M. Cheepu, V. Muthupandi, S. Loganathan, Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer, Mater. Sci. Forum. 710 (2012) 620-625.

DOI: 10.4028/www.scientific.net/msf.710.620

Google Scholar

[16] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[17] M. Cheepu, S. Haribabu, T. Ramachandraiah, B. Srinivas, D. Venkateswarulu, S. Karna, S. Alapati, W.S. Che, Fabrication and analysis of accumulative roll bonding process between magnesium and aluminum multi-layers, Appl. Mech. Mater. 877 (2018) 183-189.

DOI: 10.4028/www.scientific.net/amm.877.183

Google Scholar

[18] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia. Mater. Sci. 5 (2014) 1107-1113.

DOI: 10.1016/j.mspro.2014.07.404

Google Scholar

[19] H. Sangathoti, M. Cheepu, L. Tammineni, N.K. Gurasala, V. Devuri, V.C. Kantumuchu, Dissimilar friction welding of AISI 304 austenitic stainless steel and AISI D3 tool steel: Mechanical properties and microstructural characterization. In Advances in Materials and Metallurgy, pp.271-281. Springer, Singapore, (2019).

DOI: 10.1007/978-981-13-1780-4_27

Google Scholar

[20] M. Cheepu, B. Srinivas, N. Abhishek, T. Ramachandraiah, S. Karna, D. Venkateswarlu, S. Alapati, W.S. Che, Dissimilar joining of stainless steel and 5083 aluminum alloy sheets by gas tungsten arc welding-brazing process, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012048.

DOI: 10.1088/1757-899x/330/1/012048

Google Scholar

[21] Karna, M. Cheepu, D. Venkateswarulu, V. Srikanth, Recent developments and research progress on friction stir welding of titanium alloys: an overview. IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012068.

DOI: 10.1088/1757-899x/330/1/012068

Google Scholar

[22] D. Venkateswarulu, M. Cheepu, D. Krishnaja, S. Muthukumaran, Influence of water cooling and post-weld ageing on mechanical and microstructural properties of the friction-stir welded 6061 aluminium alloy joints. Appl. Mech. Mater. 877 (2018) 163-176.

DOI: 10.4028/www.scientific.net/amm.877.163

Google Scholar

[23] B. Srinivas, N. Murali Krishna, Muralimohan Cheepu, K. Sivaprasad, V. Muthupandi, Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 012079.

DOI: 10.1088/1757-899x/330/1/012079

Google Scholar

[24] B. Srinivas, Muralimohan. Cheepu, K. Sivaprasad, V. Muthupandi, Effect of gaussian beam on microstructural and mechanical properties of dissimilar laser welding ofAA5083 and AA6061 alloys, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 012066.

DOI: 10.1088/1757-899x/330/1/012066

Google Scholar

[25] G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Mater. Sci. Eng. A 509 (2009) 98-104.

DOI: 10.1016/j.msea.2009.01.009

Google Scholar

[26] D. Venkateswarlu, M. Cheepu, M.M. Mahapatra, Analysing the friction stir welded joints of AA2219 Al-Cu alloy in different heat-treated-state. IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018) 012074.

DOI: 10.1088/1757-899x/330/1/012074

Google Scholar

[27] K. Devireddy, V. Devuri, M. Cheepu, B.K. Kumar, Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone, Int. J. Mech. Prod. Eng. Res. Dev. 8(1) (2018) 243-252.

DOI: 10.24247/ijmperdfeb201828

Google Scholar

[28] Dhananjayulu, A., Devuri, V., Cheepu, M., Dwivedi, D.K.: Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds. IOP Conf. Ser. Mater. Sci. Eng. 330 (1), 012081 (2018).

DOI: 10.1088/1757-899x/330/1/012081

Google Scholar

[29] M. Cheepu, D. Venkateswarlu, M.M. Mahapatra, W.S. Che, Influence of heat treatment conditions of Al-Cu aluminum alloy on mechanical properties of the friction stir welded joints. Korean Welding and Joining Society, 11 (2017) 264-264. http://www.dbpia.co.kr/Journal/ArticleDetail.NODE07278590.

Google Scholar

[30] H. Fatemeh, D.K. Aidun, Consumable selection for arc welding between Stainless Steel 410 and Inconel 718. J. Mater. Process. Technol. 245(2017) 287-299.

DOI: 10.1016/j.jmatprotec.2017.02.013

Google Scholar

[31] M.C. Kushan, S.C. Uzgur, Y. Uzunonat, F. Diltemiz (2012). ALLVAC 718 Plus Superalloy for Aircraft Engine Applications, Recent Advances in Aircraft Technology, Dr. Ramesh Agarwal (Ed.).

DOI: 10.5772/38433

Google Scholar

[32] A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado High temperature deformation of Inconel 718 J. Mater. Process. Technol, 177 (2006) 469-472.

DOI: 10.1016/j.jmatprotec.2006.04.072

Google Scholar

[33] Y. Huang, T.G. Langdon The evolution of delta-phase in a superplastic Inconel 718 alloy. J. Mater. Sci. 42(2007) 421-427.

DOI: 10.1007/s10853-006-0483-z

Google Scholar