Effects of Thermal Annealing Processes in Phosphorous Implanted 4H-SiC Layers

Article Preview

Abstract:

Silicon carbide (SiC) is an attractive material for power devices owing to the availability of high-quality epitaxial wafers and superior physical properties, such as its high breakdown electric field strength, high electron mobility, and low anisotropy. Ion implantation is a key process for both n- and p-type selective doping of SiC devices. A subsequent annealing in the temperature range of 1600- 1800°C is required to remove the damage induced by the implantation process and to electrically activate the implanted dopants. The aim of this work is the investigation of the effect of thermal annealing on the damage induced by Phosphorous ion implantation to produce n-type regions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-411

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] T. Kimoto, J. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications, 2014 JohnWiley & Sons Singapore Pte. Ltd.

Google Scholar

[2] G. Feng, J. Suda, T. Kimoto, Physica B 404 (2009) 4745–4748.

Google Scholar

[3] L. Calcagno et al., Journal of Applied Physics 102, 043523 (2007).

Google Scholar