Microstructure, Texture and Mechanical Properties after Cold Working and Annealing in a Biomedical Ti-Nb-Ta Alloy

Article Preview

Abstract:

β titanium alloys, comprising alloying elements such as Nb, Ta, Zr, are considered promising materials for use in orthopedic applications, as the lower elastic modulus of these alloys, reduces the chance of implant failure caused by stress shielding. The mechanical behavior of these alloys depend on the composition as well as the stability of the phases. In the present study, the effect of cold rolling and subsequent annealing on the microstructure, texture and mechanical behavior of a Ti-Nb-Ta-O alloy has been investigated. Structural characterization was done using x-ray diffraction (XRD) and optical microscopy. Mechanical properties were evaluated by estimation of hardness and elastic modulus. The results show that, (1) the alloy contains single-phase β microstructure in both deformed as well as annealed condition with no evidence of deformation induced phase transformation, (2) the microstructures of cold worked alloy become increasingly inhomogeneous with dominance of shear bands at higher rolling strains, (3) high value of hardness to modulus ratio could be obtained in the present alloy due to stability of β phase and interstitial strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2465-2470

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, First-principles calculations for development of low elastic modulus Ti alloys. Phys. Rev. B. 70-17 (2004) 174113.

DOI: 10.1103/physrevb.70.174113

Google Scholar

[2] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro., Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A. 243-1 (1998) 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[3] T. Saito, T. Furuta, J. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 300-5618 (2003) 464-467.

DOI: 10.1126/science.1081957

Google Scholar

[4] R. Banerjee, S. Nag, H. Fraser, A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Mater. Sci. Eng. C. 25-3 (2005) 282-289.

DOI: 10.1016/j.msec.2004.12.010

Google Scholar

[5] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater Sci. 54-3 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[6] H. Rack, J. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C. 26-8 (2006) 1269-1277.

Google Scholar

[7] S. Ishiyama,., S. Hanada, O. Izumi, Effect of Zr, Sn and Al additions on deformation mode and beta phase stability of metastable beta Ti alloys. ISIJ Int. 31-8 (1991) 807-813.

DOI: 10.2355/isijinternational.31.807

Google Scholar

[8] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7-6 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[9] N. Paton, J. Williams, The influence of oxygen content on the athermal β-ω transformation. Scr. Metall. 7-6 (1973) 647-649.

Google Scholar

[10] J Williams,. B. Hickman, D. Leslie, The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall Trans. 2-2 (1971) 477-484.

DOI: 10.1007/bf02663337

Google Scholar

[11] O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, S Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys, J. Alloys Compd.. 457-1 (2008) 296-309.

DOI: 10.1016/j.jallcom.2007.03.070

Google Scholar

[12] N.P. Gurao, S. Suwas, Study of texture evolution in metastable β-Ti alloy as a function of strain path and its effect on α transformation texture, Mater. Sci. Eng. A, 504-1 (2009) 24-35.

DOI: 10.1016/j.msea.2008.11.053

Google Scholar

[13] M. Barnett, Role of in-grain shear bands in the nucleation of< 111>//ND recrystallization textures in warm rolled steel, ISIJ int. 38-1 (1998) 78-85.

DOI: 10.2355/isijinternational.38.78

Google Scholar

[14] M. Hatherly, A. Malin, Shear bands in deformed metals, Scr. Metall. 18-5 (1984) 449-454.

DOI: 10.1016/0036-9748(84)90419-8

Google Scholar

[15] S. Bahl, A.S. Krishnamurthy, S. Suwas, Kaushik Chatterjee, Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti-Nb-Sn alloy for orthopedic applications. Mater. Des., 126 (2017) 226-237.

DOI: 10.1016/j.matdes.2017.04.014

Google Scholar

[16] S.Nag, R. Banerjee, H. Fraser, Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys, Mater. Sci. Eng. C. 25-3 (2005) 357-362.

DOI: 10.1016/j.msec.2004.12.013

Google Scholar

[17] M. Besse, P. Castany, T. Gloriant, Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence. Acta Mater. 59-15 (2011) 5982-5988.

DOI: 10.1016/j.actamat.2011.06.006

Google Scholar

[18] Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater. Des. 32-5 (2011) 2934-2939.

DOI: 10.1016/j.matdes.2010.11.049

Google Scholar