Magnetic Properties of Pure Iron with Respect to Different C/Si Ratios and Grain Sizes

Article Preview

Abstract:

Pure iron with C/Si > 1 and C/Si < 1 was smelted by a vacuum arc furnace, and the grain size was controlled through different heat treatments. The microstructure of pure iron was observed by using an optical microscope, and the grain size was subsequently measured and calculated. Finally, the coercive force, saturation magnetic induction, and permeability were measured using a vibrating sample magnetometer. The results indicate that the coercive force increases with decreases in the average grain diagonal size. An increase in the uniformity of the grain increases the saturation magnetic induction. The permeability depends on the average grain diagonal size and the uniformity of the grain as well as the chemical composition of pure iron.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

653-660

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] M. A. Willard, V. Franco, The role of microstructure and processing on magnetic properties of materials, JOM 65 (2013) 851-852.

DOI: 10.1007/s11837-013-0621-4

Google Scholar

[2] L. H. Lewis, FélixJiménez-Villacorta, Perspectives on permanent magnetic materials for energy conversion and power generation, Metall. Mater. Trans. A. 44 (2013) 2-20.

DOI: 10.1007/s11661-012-1278-2

Google Scholar

[3] V. Franco, O. Gutfleisch, Magnetic materials for energy applications, JOM 64 (2012) 750-751.

DOI: 10.1007/s11837-012-0348-7

Google Scholar

[4] H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs), J. of Mater. Process. Tech. 189 (2012) 1-12.

Google Scholar

[5] M. Strečková, L. Medvecký, J. Füzer, P. Kollár, R. Bureš, M. Fáberová, Design of novel soft magnetic composites based on Fe/resin modified with silica, Mater. Lett. 101 (2013) 37-40.

DOI: 10.1016/j.matlet.2013.03.067

Google Scholar

[6] X. D He, X. Li, Y. Sun, Microstructure and magnetic properties of high silicon electrical steel produced by electron beam physical vapor deposition, J. Magn. Mater. 320 (2008) 217-221.

DOI: 10.1016/j.jmmm.2007.05.030

Google Scholar

[7] R. X. Dai, N. F. Chen, X. W. Zhan, Net-like ferromagnetic MnSb film deposited on porous silicon substrates, J. Crys. Growth. 299 (2007) 142-145.

DOI: 10.1016/j.jcrysgro.2006.11.132

Google Scholar

[8] C. S. Li, J. W. Sun, G. F. Sun, Study on ferromagnetic shape memory alloy Ni-Mn-Ga films, Surf. Coat. Technol. 201(2007) 5348-5353.

DOI: 10.1016/j.surfcoat.2006.07.095

Google Scholar

[9] F. Nasirpouri, S. J. Bending, L. M. Peter, H Fangohr, Electrode position and magnetic properties of three-dimensional bulk and shell nickel mesostructures, Thin Solid Films. 519 (2011) 8320-8325.

DOI: 10.1016/j.tsf.2011.03.058

Google Scholar

[10] F. Moroa, S. Vi, Y. Tang, F. Tuna, E. Lester, Magnetic properties of cobalt oxide nanoparticles synthesized by a continuous hydrothermal method, J. Magn. Mater. 348 (2013) 1-7.

Google Scholar

[11] I. Bilecka, L. Li, I. Djerdj, M. D. Rossell, M. Jagodič, Microwave-assisted nonaqueous sol-gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C. 115 (2015) 1484-1495.

DOI: 10.1021/jp108050w

Google Scholar

[12] M. S. Inpasalini, P. V. Rajesh, D. Das, S. Mukherjee, Structural, optical, and magnetic studies of Co-doped mesoscopic ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 26 (2015) 1-7.

DOI: 10.1007/s10854-014-2504-z

Google Scholar

[13] N. Doğan, A. Bingölbali, L. Arda, Preparation, structure, and magnetic characterization of Ni doped ZnO nano-particles, J. Magn. Mater. 373 (2015) 226-230.

DOI: 10.1016/j.jmmm.2014.03.053

Google Scholar

[14] V. Kumar, S. Singh, Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles, Appl. Surf. Sci. 386 (2016) 78-83.

DOI: 10.1016/j.apsusc.2016.05.163

Google Scholar

[15] A. V. Ponomareva, Y. N. Gornostyrev, I. A. Abrikosov, Energy of interaction between carbon impurities in paramagnetic γ-iron, J. Exp. Theor. Phys. 120 (2015) 716-724.

DOI: 10.1134/s1063776115020193

Google Scholar

[16] E. K. Delczegczirjak, A. Edström, M. Werwiński, J. Rusz, N. V. Skorodumova, Stabilization of the tetragonal distortion of FexCo1-x alloys by C impurities: A potential new permanent magnet, Phys. Rev. B. 89 (2014) 144403.

DOI: 10.1103/physrevb.89.144403

Google Scholar

[17] V. Gandhi, R. Ganesan, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C. 118 (2014) 9715-9725.

DOI: 10.1021/jp411848t

Google Scholar

[18] E. Cesari, J. Pons, C. Segui, V. A. Chernenko, New ferromagnetic shape memory alloy systems, Appl. Crystallogr. - the XIX Conference. 36 (2014) 128-133.

DOI: 10.1002/chin.200548223

Google Scholar

[19] C. Mahalakshmi, S. V. Kumar, M. Muthueaman, S. Seenithural, M. Mahendran, Effect of Mn substitution on structural and magnetic properties of ferromagnetic shape memory alloys, Mech. Adv. Mater. Struct. 23 (2016) 631-635.

DOI: 10.1080/15376494.2015.1022638

Google Scholar