Investigation of Texture Structure and Mechanical Properties Evolution during Hot Deformation of 1565 Aluminum Alloy

Article Preview

Abstract:

The article is devoted to study of mechanical properties and texture evolution during thermal mechanical treatment of new aluminum 5XXX series alloy (1565 ch in Russian naming system). For the investigation of deformation behavior of 1565ch alloy a Gleeble axial compression mode is used. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. For texture evolution investigation industrial mills is used. Texture evaluation is performed using the orientation distribution function (ODF) calculated from the X-ray direct pole figures

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

May 2016

Export:

* - Corresponding Author

[1] A.S. Oryshchenko , E.P. Osokin, N.N. Barakhtina, A.M. Drits, S.M. Sosedkov, Aluminum-magnesium alloy 1565ch for cryogenic application, Tsvetnye Metally. 11 (2012) 84 – 90.

Google Scholar

[2] V.G. Davydov, V.I. Elagin, V.V. Zakharov,  T.D. Rostova, Alloying aluminum alloys with scandium and zirconium additives, Metal Science and Heat Treatment. 38 (1996) 347-352.

DOI: 10.1007/bf01395323

Google Scholar

[3] J. Røyset,  N. Ryum, Scandium in aluminum alloys, International Materials Reviews. 50 (2005) 19-44.

DOI: 10.1179/174328005x14311

Google Scholar

[4] Y.W. Riddle, T.H. Sanders Jr., A Study of Coarsening, Recrystallization, and Morphology of Microstructure in Al-Sc-(Zr)-(Mg) Alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 35 A (2004) 341-350.

DOI: 10.1007/s11661-004-0135-3

Google Scholar

[5] H. E. Vatne, T. Furu, R. Orsund, E. Nes, Modeling recrystallization after hot deformation of aluminum, In: Acta Mater. 44. 11 (1996) 4463–4473.

DOI: 10.1016/1359-6454(96)00078-x

Google Scholar

[6] O. Engler, L. Loechte, J. Hirsch, Through-process simulation of texture and properties during the thermomechanical processing of aluminum sheets, In: Acta Mater. 55. 16 (2007) 5449–5463.

DOI: 10.1016/j.actamat.2007.06.010

Google Scholar

[7] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. 2nd ed. England: Elsevier, (2004).

Google Scholar

[8] Ning Wang. Softening behaviour o fAl-Mn-Fe-Si alloys during isothermal annealing,. PhD thesis. NTNU, (2013).

Google Scholar

[9] Han Han, The Validity of Mathematical Models Evaluated by Two-specimen Method under the Unknown Coefficient of Friction and Flow Stress, Materials Forming, Department of Production Engineering, Royal Institute of Technology 100 44 Stockholm, Sweden, (2002).

DOI: 10.1016/s0924-0136(02)00059-6

Google Scholar

[10] J. M'C. Buchanan, R.D. Knutsen and J.A. Basson, Solving for Friction Effects during Mechanical Compression Testing R & D Journal. 20 (2004) 3-7.

Google Scholar

[11] V. N. Serebryanyi, S. F. Kurtasov, M. A. Litvinovich, Analysis of ODF errors upon the reversion of polar figures with the use of the statistical method of ridge estimations, Zavod. Lab., Diagn. Mater. 73 (2007) 29–35.

Google Scholar

[12] S. F. Kurtasov, Quantitative analysis of the rolling textures of materials with a cubic symmetry of crystal lattice, Zavod. Lab., Diagn. Mater. 73 (2007) 29–35.

Google Scholar

[13] Sellars CM, Tegart WJ, Mc G, La relation entre la résistance et la structure dans la deformation à chaud, Memories Scientifiques Rev. Métallurg. 63 (1966) 731-746.

Google Scholar

[14] E.V. Aryshenskii, V.Y. Aryshenskii, A.F. Grechnikova, E.D. Beglov, Evolution of Texture and Microstructure in the Production of Sheets and Ribbons from Aluminum Alloy 5182 in Modern Rolling Facilities, Metal Science and Heat Treatment. 56 (2014).

DOI: 10.1007/s11041-014-9760-7

Google Scholar