A Unified Theoretical Framework to Model Bulk, Surface and Interfacial Thermodynamic Properties of Immiscible Liquid Alloys

Article Preview

Abstract:

Bulk, surface and interface thermodynamics of immiscible liquid alloys are considered within a unified theoretical framework. For bulk thermodynamic functions the exponential and the combined linear-exponential equations are discussed, obeying the 4th law of thermodynamics. Surface phase transition is discussed in details. For surface and interface thermodynamics the monolayer Butler equation is compared to the multilayer model. During further assessment of bulk thermodynamic data of immiscible liquid alloys their experimentally measured surface tension and interfacial energy should be also taken into account, coupled with the models presented here.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-19

Citation:

Online since:

March 2013

Export:

Price:

[1] T.B. Massalski (ed), Binary Alloy Phase Diagrams, 3 volumes, ASM International, (1990).

Google Scholar

[2] J.Z. Zhao, S. Drees, L. Ratke, Strip casting of Al-Pb alloys - a numerical analysis, Mater. Sci and Eng. A, 282 (2000) 262-290.

DOI: 10.1016/s0921-5093(99)00755-8

Google Scholar

[3] C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297 (2002) 990-993.

DOI: 10.1126/science.1073050

Google Scholar

[4] G. Kaptay, On the wettability, encapsulation and surface phase transition in monotectic liquid metallic systems, Mater. Sci. Forum, 537-538 (2007) 527-532.

DOI: 10.4028/www.scientific.net/msf.537-538.527

Google Scholar

[5] M. Wu, A. Ludwig, L. Ratke, Modeling of Marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys, Metall. Mater. Trans. A, 34A (2003) 3009-3019.

DOI: 10.1007/s11661-003-0200-3

Google Scholar

[6] J.Z. Zhao, J. He, Z.Q. Hu, L. Ratke, Microstructure evolution in immiscible alloys during rapid directional solidification, Z. Metallkd, 95 (2004) 362-368.

DOI: 10.3139/146.017967

Google Scholar

[7] M. Svéda, A. Roósz, G. Buza, Formation of lead bearing surface layers on aluminum alloys by laser alloying, Mater. Sci. Forum, 508 (2006) 99-104.

DOI: 10.4028/www.scientific.net/msf.508.99

Google Scholar

[8] I. Budai, G. Kaptay, A new class of engineering materials: particles stabilized metallic emulsions and monotectic alloys, Metall. Mater Trans A, 40A (2009) 1524-1528.

DOI: 10.1007/s11661-009-9857-6

Google Scholar

[9] I. Budai, O.Z. Nagy, G. Kaptay, Inversion of a liquid Bi/Al metallic emulsion stabilized by solid SiC particles, Coll Surf A, 377 (2011) 325-329.

DOI: 10.1016/j.colsurfa.2011.01.028

Google Scholar

[10] O.Z. Nagy, J.T. Szabo, G. Kaptay, Stabilization of metallic emulsions by in-situ precipitating intermetallic layers, Intermetallics, 26 (2012) 26-30.

DOI: 10.1016/j.intermet.2012.03.048

Google Scholar

[11] G. Kaptay, On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagram, Coll Surfaces A, 282-283 (2006) 387-401.

DOI: 10.1016/j.colsurfa.2005.12.021

Google Scholar

[12] I. Budai, G. Kaptay, Wettability of SiC and alumina particles by liquid Bi under liquid Al, J. Mater. Sci., 45 (2010) 2090-(2098).

DOI: 10.1007/s10853-009-3907-8

Google Scholar

[13] C.R. Heiple, J.R. Roper, Mechanism for minor element effect on GTA fusion zone geometry, Welding J., 61 (1982) 97s-102s.

Google Scholar

[14] Y. Wang, H.L. Tsai, Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding, Metall. Mater. Trans. B, 32B (2001) 501-514.

DOI: 10.1007/s11663-001-0035-5

Google Scholar

[15] S. Lu, H. Fujii, K. Nogi, Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding, Scr. Mater, 51 (2004) 271-277.

DOI: 10.1016/j.scriptamat.2004.03.004

Google Scholar

[16] Y. Zhao, Y. Lei, Y. Shi, Effects of surface-active elements sulphur on flow patterns of welding pool, J. Mater. Sci. Technol., 21 (2005) 408-414.

Google Scholar

[17] T. Sándor, C. Mekler, J. Dobránszky, G. Kaptay, An improved theoretical model for A-TIG welding based on surface phase transition and reversed Marangoni flow, Metall. Mater. Trans. A, doi: 10. 1007/s11661-012-1367-2.

DOI: 10.1007/s11661-012-1367-2

Google Scholar

[18] J.W. Cahn, Critical point wetting, J. Chem. Phys., 66 (1977) 3667-3672.

Google Scholar

[19] P.G. de Gennes, Wetting: statics and dynamics, Rev. Modern Physics, 57 (1985) 827-863.

DOI: 10.1103/revmodphys.57.827

Google Scholar

[20] W. Freyland, Wetting transitions in fluid metallic mixtures, J. Non-Cryst. Sol. 250-252 (1999) 199-204.

DOI: 10.1016/s0022-3093(99)00117-9

Google Scholar

[21] D. Bonn, D. Ross, Wetting transitions, Rep. Prog. Phys., 64 (2001) 1085-1163.

DOI: 10.1088/0034-4885/64/9/202

Google Scholar

[22] C. Serre, P. Wynblatt, D. Chatain, Study of wetting-related adsorption transition in the Ga-Pb system: 1. Surface energy measurements of Ga-rich liquids, Surf. Sci., 415 (1998) 336-345.

DOI: 10.1016/s0039-6028(98)00567-6

Google Scholar

[23] H. Shim, D. Chatain, P. Wynblatt, Study of wetting-related adsorption transition in the Ga-Pb system: 2. Surface composition measurements of Ga-rich liquids, Surf. Sci., 415 (1998) 346-350.

DOI: 10.1016/s0039-6028(98)00568-8

Google Scholar

[24] H. Shim, P. Wynblatt, D. Chatain, Wetting-related transitions in liquid Ga-Tl alloys, Surf. Sci. Lett., 476 (2001) L273-L277.

DOI: 10.1016/s0039-6028(01)00698-7

Google Scholar

[25] A. Turchanin, D. Nattland, W. Freyland, Surface freezing in a liquid eutectic Ga-Bi alloy, Chem. Phys. Lett., 337 (2001) 5-10.

DOI: 10.1016/s0009-2614(01)00185-3

Google Scholar

[26] G. Kaptay, A method to calculate equilibrium surface phase transition lines in monotectic systems, Calphad 29 (2005) 56-67 (+ Erratum, same volume, p.262).

DOI: 10.1016/j.calphad.2005.07.007

Google Scholar

[27] C. Mekler, G. Kaptay, Calculation of surface tension and surface phase transition line in binary Ga-Tl system, Mater. Sci. Eng. A, 495 (2008) 65-69.

DOI: 10.1016/j.msea.2007.10.111

Google Scholar

[28] J.A.V. Butler, The thermodynamics of the surfaces of solutions, Proc. Roy. Soc. A, 135 (1932) 348-375.

Google Scholar

[29] T. Tanaka, K. Hack, S. Hara, Use of thermodynamic data to determine surface tension and viscosity of metallic alloys, MRS Bulletin, 24 (1999) 45-50.

DOI: 10.1557/s0883769400052180

Google Scholar

[30] W. Gasior, Z. Moser, J. Pstrus, Density and surface tension of the Pb-Sn liquid alloys, J. Phase Equilibria, 22 (2001) 20-25.

DOI: 10.1007/s11669-001-0051-9

Google Scholar

[31] R. Picha, J. Vrestal, A. Kroupa, Prediction of alloy surface tension using a thermodynamic database, Calphad, 28 (2004) 141-146.

DOI: 10.1016/j.calphad.2004.06.002

Google Scholar

[32] J. Brillo, Y. Plevachuk, I. Egry, Surface tension of liquid Al-Cu-Ag ternary alloys, J. Mater. Sci., 45 (2010) 5150-5157.

DOI: 10.1007/s10853-010-4512-6

Google Scholar

[33] P. Wynblatt, A. Saul, D. Chatain, The effects of prewetting and wetting transitions on the surface energy of liquid binary alloys, Acta mater., 46 (1998) 2337-2347.

DOI: 10.1016/s1359-6454(98)80015-3

Google Scholar

[34] G. Kaptay, A CALPHAD-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems, Calphad, 32 (2008) 338-352.

DOI: 10.1016/j.calphad.2007.10.002

Google Scholar

[35] G. Kaptay, On the interfacial energy of coherent interfaces. Acta Mater, 60 (2012) 6804-6813.

DOI: 10.1016/j.actamat.2012.09.002

Google Scholar

[36] H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics. The Calphad method. Cambridge University Press, Cambridge, UK, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[37] G. Kaptay, On the tendency of solutions to tend toward ideal solutions at high temperatures, Metall. Mater. Trans. A, 43 (2012) 531-543.

DOI: 10.1007/s11661-011-0902-x

Google Scholar

[38] C.H.P. Lupis, J.F. Elliott, Correlation between excess entropy and enthalpy functions, Trans. Met. Soc. AIME, 236 (1966) 130.

Google Scholar

[39] L. Kaufman, H. Bernstein, Computer Calculation of phase diagrams (with special reference to refractory metals), Academic Press, NY, USA, (1970).

Google Scholar

[40] B. Predel (ed. ), Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, volume 5 of group IV of Landolt-Börnstein Handbook, Springer-Verlag, Berlin, 1991-(1997).

Google Scholar

[41] V.T. Witusiewitz, F. Sommer, Estimation of the excess entropy of mixing and the excess heat capacity of liquid alloys, J. Alloys Comps., 312 (2000) 228-237.

DOI: 10.1016/s0925-8388(00)01158-0

Google Scholar

[42] S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer, On the calculation of multicomponent stable phase diagrams, J. Phase Equi., 22 (2001) 373-378.

DOI: 10.1361/105497101770332910

Google Scholar

[43] G. Kaptay, A new equation for the temperature dependence of the excess Gibbs energy of solution phases, Calphad 28 (2004) 115-124.

DOI: 10.1016/j.calphad.2004.08.005

Google Scholar

[44] K. Arroyave, Z.K. Liu, Thermodynamic modelling of the Zn-Zr system, Calphad 30 (2006) 1-13.

DOI: 10.1016/j.calphad.2005.12.006

Google Scholar

[45] X. Yuan, W. Sun, Y. Du, D. Zhao, H. Yang, Thermodynamic modelling of Mg-Si system with the Kaptay equation for the excess Gibbs energy of the liquid phase, Calphad 33 (2009) 673-678.

DOI: 10.1016/j.calphad.2009.08.004

Google Scholar

[46] C.Y. Zhan, W. Wang, Z.L. Tang, Z.R. Nie, Thermodynamic Research on Solution Properties of Al-Er Alloys, Mater. Sci. Forum 610-613 (2009) 674-680.

DOI: 10.4028/www.scientific.net/msf.610-613.674

Google Scholar

[47] C. Guo, C. Li, Z. Du, A thermodynamic modelling of the Gd-Tl system, J. Alloys Compds., 492 (2009) 122-127.

Google Scholar

[48] Y. Tang, X. Yuan, Y. Du, Thermodynamic modeling of the Fe-Zn system using exponential temperature dependence for the excess Gibbs energy, JMM B 37 (2011) 1-10.

Google Scholar

[49] Y. Tang, Y. Du, L. Zhang, X. Yuan, G. Kaptay, Thermodynamic description of the Al–Mg–Si system using a new formulation for the excess Gibbs energy, Thermochim. Acta 527 (2012) 131-142.

DOI: 10.1016/j.tca.2011.10.017

Google Scholar

[50] J.W. Gibbs, On the Equlibrium of Heterogenous Substances, Trans. Conn. Acad. Arts Sci. 3 (1875-1878) 108-248 and 343-524.

Google Scholar

[51] G. Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater. Sci. Eng. A, 495 (2008).

DOI: 10.1016/j.msea.2007.10.112

Google Scholar

[52] G. Kaptay, On the order–disorder surface phase transition and critical temperature of pure liquid metals originating from bcc, fcc and hcp crystal structures, Int. J. Thermophysics 33 (2012) 1177-1190.

DOI: 10.1007/s10765-012-1270-5

Google Scholar

[53] D. Chatain, L. Martin-Garin, N. Eustathopoulos, Etude experimentale de la tension interfaciale liquide-liquide du systeme Ga-Pb entre le temperatures monotectique et critique, J. chim. phys., 79 (1982) 569-577.

DOI: 10.1051/jcp/1982790569

Google Scholar

[54] M. Merkwitz, J. Weise, K. Thriemer, W. Hoyer, Liquid-liquid interfacial tension in the demixing metal systems Ga-Hg and Ga-Pb, Z. Metallkd., 89 (1998) 247-255.

Google Scholar

[55] I. Kaban, W. Hoyer, M. Merkwitz, Experimental study of the liquid/liquid interfacial tension in immiscible Al-Bi system, Z. Metallkunde, 94 (2003) 831-834.

DOI: 10.3139/146.030831

Google Scholar