Preparation of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings on GH4169 Superalloy Substrates and their Static High Temperature Oxidation Behaviour

Article Preview

Abstract:

Thermal barrier coatings (TBCs) are very important ceramic coating materials due to their excellent performance at high temperature. Double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ TBCs, nanostructured single-ceramic-layer (SCL) 8YSZ and conventional SCL 8YSZ TBCs with the same thickness were fabricated by atmospheric plasma spraying in the present work. The static high temperature oxidation behaviour of the three as-sprayed coatings at 1000 and 1200 was investigated systematically. The results indicated that the LZ/8YSZ has higher oxidation resistance than that of SCL 8YSZ. The addition of LZ ceramic layer can increase the insulation temperature, impede the oxygen transferring to the bond coat and decrease the formation rate of the thermally grown oxide (TGO). The formation of the oxidized isolated islands in the bond-coat has decreased the effective thickness of the TGO at the bond coat/ceramic layer interface due to the depletion of the metallic elements in the bond-coat.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-632

Citation:

Online since:

March 2013

Export:

Price:

[1] N.P. Padture, M. Gell, E.H. Jordan. Materials science-Thermal barrier coatings for gas-turbine engine applications, Science. 296(2002)280-284.

DOI: 10.1126/science.1068609

Google Scholar

[2] A.G. Evans, D.R. Mumm, J.W. Hutehinson, G.H. Meier, F.S. Pettit. Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci. 46(2001)505-553.

DOI: 10.1016/s0079-6425(00)00020-7

Google Scholar

[3] A.G. Evans, M.Y. He, J.W. Hutchinson etal. Mechanics-based scaling laws for the durability of thermal barrier coatings, Prog. Mater Sci. 46(2001)249-271.

DOI: 10.1016/s0079-6425(00)00007-4

Google Scholar

[4] S.C. Joshi, H.W. Ng. Optimizing functionally graded nickel-zirconia coating profiles for thermal stress relaxation, Simul. Model. Pract. Th. 19(2011)586-598.

DOI: 10.1016/j.simpat.2010.08.013

Google Scholar

[5] S. Uwe, L. Christoph, F. Klaus, P. Manfred, S.B. Bilge, L. Odile. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7(2003)73-80.

Google Scholar

[6] E.P. Busso, L. Wright, H.E. Evans, L.N. Mccartney, S.R.J. Saunders, S. Osgerby, J. Nunn. A physics-based life prediction methodology for thermal barrier coating systems, Acta Mater. 55(2007)1491-1503.

DOI: 10.1016/j.actamat.2006.10.023

Google Scholar

[7] O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, L. Singheiser. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-Part I: Experiments, Surf. Coat. Technol. 202(2008)5027-5032.

DOI: 10.1016/j.surfcoat.2008.05.006

Google Scholar

[8] T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, L. Singheiser. Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines-Part II: Modeling, Surf. Coat. Technol. 202(2008)5901-5908.

DOI: 10.1016/j.surfcoat.2008.06.132

Google Scholar

[9] R. Vaßen, G. Kerkhoff, D. Stöver. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings, Mater. Sci. Eng. A. 303(2001)100-109.

DOI: 10.1016/s0921-5093(00)01853-0

Google Scholar

[10] P. Robin, F. Gitzhofer, P. Fauchais, M. Boulos. Remaining Fatigue Life Assessment of Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray. Technol. 19(2010)911-920.

DOI: 10.1007/s11666-010-9509-9

Google Scholar

[11] A.M. Karlsson, J.W. Hutchinson, A.G. Evans. A fundamental model of cyclic instabilities in thermal barrier systems, J. Mech. Phys. Solids. 50(2002)1565-1589.

DOI: 10.1016/s0022-5096(02)00003-0

Google Scholar

[12] E.P. Busso, J. Lin, S. Sakurai, M. Nakayama. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: model formulation, Acta Mater. 49(2001)1515-1528.

DOI: 10.1016/s1359-6454(01)00060-x

Google Scholar

[13] D.R. Mumm, A.G. Evans, I.T. Spitsberg. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system, Acta Mater. 49(2001)2329-2340.

DOI: 10.1016/s1359-6454(01)00071-4

Google Scholar

[14] T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub, W.G. Sloof. Damage growth triggered by interface irregularities in thermal barrier coatings, Acta Mater. 57(2009)2624-2630.

DOI: 10.1016/j.actamat.2009.01.022

Google Scholar

[15] Z.H. Xu, R.D. Mu, L.M. He, X.Q. Cao. Effect of diffusion barrier on the high-temperature oxidation behavior of thermal barrier coatings, J. Alloys. Compd. 466(2008)471-478.

DOI: 10.1016/j.jallcom.2007.11.083

Google Scholar

[16] M.R. Far, J. Absi, G. Mariaux, S. Shahidi. Effect of Residual Stresses and Prediction of Possible Failure Mechanisms on Thermal Barrier Coating System by Finite Element Method, J. Therm. Spray. Technol. 19(2010)1054-1061.

DOI: 10.1007/s11666-010-9512-1

Google Scholar

[17] V.K. Tolpygo, D.R. Clarke, K.S. Murphy. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence, Surf. Coat. Technol. 188-189(2004)62-70.

DOI: 10.1016/j.surfcoat.2004.08.001

Google Scholar

[18] H.B. Guo, L.D. Sun, H.F. Li, S.K. Gong. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system, Thin Solid Films, 516(2008)5732-5735.

DOI: 10.1016/j.tsf.2007.07.031

Google Scholar

[19] W.O. Soboyejo, P. Mensah, R. Diwan, J. Crowe, S. Akwaboa. High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0. 25% Hf, Mater. Sci. Eng. A. 528(2011)2223-2230.

DOI: 10.1016/j.msea.2010.11.066

Google Scholar

[20] T.S. Hille, S. Turteltaub, A.S.J. Suiker. Oxide growth and damage evolution in thermal barrier coatings, Eng. Fract. Mech. 78(2011)2139-2152.

DOI: 10.1016/j.engfracmech.2011.04.003

Google Scholar

[21] H. Bhatnagar, S. Ghosh, M.E. Walter. Parametric studies of failure mechanisms in elastic EB-PVD thermal barrier coatings using FEM. Int. J. Solids. Struct. 43(2006)4384-4406.

DOI: 10.1016/j.ijsolstr.2005.07.037

Google Scholar

[22] W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, P.C. Patnaik. TGO growth behavior in TBCs with APS and HVOF bond coats, Surf. Coat. Technol. 202(2008)2677-2683.

DOI: 10.1016/j.surfcoat.2007.09.042

Google Scholar

[23] F.F. Xu, J.H. Yu, X.L. Mou, L.L. Zhang, S.Y. Tao. Structures and morphology of the ordered domains in Sm2Zr2O7 coatings, Chem. Phys. Lett. 492(2010)235-240.

DOI: 10.1016/j.cplett.2010.04.061

Google Scholar

[24] Z.H. Xu, L.M. He, R.D. Mu, S.M. He, G.H. Huang, X.Q. Cao. Double-ceramic-layer thermal barrier coatings based on La2(Zr0. 7Ce0. 3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition, Appl. Surf. Sci. 256(2010)3661-3668.

DOI: 10.1016/j.apsusc.2010.01.004

Google Scholar

[25] R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver. Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc. 83(2000)2023-(2028).

DOI: 10.1111/j.1151-2916.2000.tb01506.x

Google Scholar

[26] R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver. Overview on advanced thermal barrier coatings, Surf. Coat. Technol. 205(2010)938-942.

DOI: 10.1016/j.surfcoat.2010.08.151

Google Scholar

[27] H.B. Guo, D.Q. Li, H. Peng, Y.J. Cui, S.K. Gong. High-temperature oxidation and hot-corrosion behaviour of EB-PVD β-NiAlDy coatings, Corros. Sci. 53(2011)1050-1059.

DOI: 10.1016/j.corsci.2010.11.041

Google Scholar

[28] Z.H. Xu, L.M. He, R.D. Mu, S.M. He, G.H. Huang, X.Q. Cao. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings, Surf. Coat. Technol. 204(2010)3652-3661.

DOI: 10.1016/j.surfcoat.2010.04.044

Google Scholar

[29] H.B. Zhao, M.R. Begley, A. Heuer, R.S. Moshtaghin, H.N.G. Wadley. Reaction, transformation and delamination of samarium zirconate thermal barrier coatings, Surf. Coat. Technol. 205(2011)4355-4365.

DOI: 10.1016/j.surfcoat.2011.03.028

Google Scholar

[30] L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, L.L. Yu.  Preparation and characterization of nanostructured La2Zr2O7 feedstock used for plasma spraying, Powder Technol. 212 (2011)267-277.

DOI: 10.1016/j.powtec.2011.06.001

Google Scholar

[31] ANSYS Inc. Release13. 0. Documentation for ANSYS.

Google Scholar

[32] R.A. Miller, J.L. Smialek, R.G. Garlick, A.H. Heuer, L.W. Hobbs. Science and Technology of Zirconia, Advances in Ceramics, vol. 3, The American Ceramic Society, Westerville, OH, 1981, pp.241-253.

Google Scholar

[33] J.R. Brandon, R. Taylor. Phase Stability of Zirconia-Based Thermal. Barrier Coatings Part I, Zirconia-Yttria Alloys, Surf. Coat. Technol. 46 (1991)75-90.

DOI: 10.1016/0257-8972(91)90151-l

Google Scholar

[34] C.A. Andersson, J. Greggi, T.K. Gupta, N. Claussen, M. Ruhle, A.H. Heuer. Science and technology of zirconia II, Advances in Ceramics, vol. 12, The American Ceramic Society, Columbus, OH, 1984, pp.78-85.

Google Scholar

[35] A.C. Fox, T.W. Clyne. Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings, Surf. Coat. Technol. 184(2004)311-321.

DOI: 10.1016/j.surfcoat.2003.10.018

Google Scholar