Titanium Dioxide Catalyzed Photocatalytic Degradation of Carboxylic Acids from Waste Water: A Review

Article Preview

Abstract:

Among the new oxidation methods in advanced oxidation processes, heterogeneous photocatalysis based on UV/ titanium dioxide is one of the emerging technologies for degrading and totally mineralizing toxic and highly stable carboxylic acids from waste water has attracted great attention in last decade. The aliphatic and aromatic carboxylic acids are widely used as reactants or produced as main products or byproducts in various chemical process industries. These chemical process industries generates waste water containing significant amount of carboxylic acids, which need to be removed from waste water before disposal to natural water bodies due to the environmental restrictions and their hazardous effects on flora and fauna. This paper reviews photocatalytic degradation (PCD) process for various carboxylic acids in detail, including basic mechanism of titanium dioxide, effect of carboxylic acid structure and various reaction parameters like effect of initial concentration and kinetic study, catalyst loading, pH, adsorption and deactivation of the photocatalyst. A critical analysis of the available literature has been made and some general conclusions have been drawn related to the above mentioned parameters. The photocatalytic degradation pathways for carboxylic acids are also discussed to understand this process thoroughly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-189

Citation:

Online since:

February 2012

Export:

Price:

[1] M. Karthik, N. Dafale, P. Pathe, T. Nandy, Biodegradability enhancement of purified terephthalic acid wastewater by coagulation–flocculation process as pretreatment, J Hazard Mater 154 (2008) 721–730.

DOI: 10.1016/j.jhazmat.2007.10.085

Google Scholar

[2] J. Y. Joung, H. W. Lee, H. Choi, M. W. Lee, J. M. Park, Influences of organic loading disturbances on the performance of anaerobic filter process to treat purified terephthalic acid wastewater, Bioresource Technology 100 (2009) 2457–2461.

DOI: 10.1016/j.biortech.2008.11.034

Google Scholar

[3] A. Mills, R. H. Davies, D. Worsley, Water-purification by semiconductor photocatalysis, Chem Soc Rev 22 (1993) 417-425.

DOI: 10.1039/cs9932200417

Google Scholar

[4] D. F. Ollis, E. Pellizzetti, N. Serpone, Destruction of water contaminants, Env Sci Tech 25 (1991) 1523-1528.

Google Scholar

[5] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental application of semiconductor photocatalysis , Chem Rev 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[6] D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications – a review, J Chem Technol Biot 77 (2001) 102-116.

DOI: 10.1002/jctb.532

Google Scholar

[7] O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment, Chem Rev 93 (1993) 671-698.

DOI: 10.1021/cr00018a003

Google Scholar

[8] D. M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air, National Renewable Energy Laboratory, (2001).

DOI: 10.2172/789771

Google Scholar

[9] J. M. Herrmann, Heterogeneous photocatalysis: Fundamentals and applications to the removal of various type of aqueous pollutants, Catal Today 53 (1999) 115-129.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[10] C. Guillard, Photocatalytic degradation of butanoic acid Influence of its ionisation state on the degradation pathway: comparison with O3/UV process, J Photoch Photobio A 135 (2000) 65-75.

Google Scholar

[11] A. D. Modestov, O. Lev, Photocatalytic oxidation of 2, 4-dichlorophenoxyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO2, J Photoch Photobio A 12 (1998) 261-270.

DOI: 10.1016/s1010-6030(97)00269-4

Google Scholar

[12] A. A. Ajmera, S. B. Sawant, V. G. Pangarkar, A.A.C.M. Beenackers, Solar assisted photocatalytic degradation of benzoic acid using titanium dioxide as a photocatalyst, Chem Eng Technol 25 (2002) 173-180.

DOI: 10.1002/1521-4125(200202)25:2<173::aid-ceat173>3.0.co;2-c

Google Scholar

[13] K. Chhor, K., J. F. Bocquet, C. Colbeau-Justin, Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen, Mater Chem Phys 86 (2004) 123–131.

DOI: 10.1016/j.matchemphys.2004.02.023

Google Scholar

[14] T. Velegraki, D. Mantzavinos, Conversion of benzoic acid during TiO2-mediated photocatalytic degradation in water , Chem Eng J 140 (2008) 15–21.

DOI: 10.1016/j.cej.2007.08.026

Google Scholar

[15] D. Vione, C. Minero, V. Maurino, M. E. Carlotti, T. Picatonotto, E. Pelizzetti, Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst , Appl Catal B: Environ 58 (2005) 79- 88.

DOI: 10.1016/j.apcatb.2004.11.018

Google Scholar

[16] H. Tahiri, Y. A. Ichou, J. M. Herrmann, Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania, J Photoch Photobio A 14 (1998) 219-226.

DOI: 10.1016/s1010-6030(98)00227-5

Google Scholar

[17] A. Assabane, Y. A., Ichou, H. Tahiri, C. Guillard, J. M. Hermann, Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1, 2, 4-benzene tricarboxylic acid), Appl Catal B: Environ 24 (2000).

DOI: 10.1016/s0926-3373(99)00094-6

Google Scholar

[18] N. Serpone, J. Martin, S. Horikoshi, H. Hidaka, Photocatalyzed oxidation and mineralization of C1–C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions—kinetics, identification of intermediates and quantum yields, J Photoch Photobio A 169 (2005).

DOI: 10.1016/j.jphotochem.2004.07.001

Google Scholar

[19] K. Wolff, D. Bockelmann, D. Bahnemann, In Symposium on Electronic and Ionic Properties of Silver Halides: Common Trends with Photocatalysis; Proceedings of the IS&T 44th Annual Conference; Levt, B., Ed.; IS&T: Springfield, VA (1991) 259-267.

Google Scholar

[20] J. M. Herrmann, H. Tahiri, C. Guillard, P. Pichat, Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water, Catal Today 54 (1999) 131–141.

DOI: 10.1016/s0920-5861(99)00175-3

Google Scholar

[21] J. M. Hermann,M. N. Mozzanega, P. Pichat, Oxidation of oxalic acid in aqueous suspensions of semiconductors illuminated with UV or visible light, J Photochem 22 (1983) 333-343.

DOI: 10.1016/0047-2670(83)85012-6

Google Scholar

[22] X. Dome`nech, J. A. Ayllo´n, J. Peral , H2O2 formation from photocatalytic processes at the ZnO/water interface,J. Environ Sci Pollut Res 8 (2001) 285-287.

DOI: 10.1007/bf02987409

Google Scholar

[23] M. M. Kosanic, Photocatalytic degradation of oxalic acid over TiO2 power, J Photoch Photobio A 119 (1996) 119-122.

Google Scholar

[24] D. S. Muggli, L. Ding , Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics , Appl Catal B: Environ 32 (2001) 181-194.

DOI: 10.1016/s0926-3373(01)00137-0

Google Scholar

[25] T. Sakata, T. Kawai, K. Hashimoto, Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction, J Phys Chem 88 (1984) 2344-2350.

DOI: 10.1021/j150655a032

Google Scholar

[26] J. Schwitzgebel , J. G. Ekerdt, H. Gerischer, A. Heller, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions , J Phys Chem 99 (1995) 5633-5638.

DOI: 10.1021/j100015a055

Google Scholar

[27] N. Serpone, J. Martin, S. Horikoshi, H. Hidak , Photocatalyzed oxidation and mineralization of C1–C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions—kinetics, identification of intermediates and quantum yields, J Photoch Photobio A 169 (2005).

DOI: 10.1016/j.jphotochem.2004.07.001

Google Scholar

[28] V. G. Gandhi, M. K. Mishra, M. S. Rao, A. Kumar, P. A. Joshi, D. O. Shah, Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium, J Ind Eng Chem 17 (2011).

DOI: 10.1016/j.jiec.2011.02.035

Google Scholar

[29] S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Photocatalytic mineralization of phenoxyacetic acid using concentrated solar radiation and titanium dioxide in slurry photoreactor, Chem Eng Res Des 84 (2006) 355–362.

DOI: 10.1205/cherd05011

Google Scholar

[30] C. S. Turchi, D. F. Ollis, Photocatalytic degradation of organic contaminants: mechanisms involving hydroxyl attack, J Catal 122 (1990) 178-192.

DOI: 10.1016/0021-9517(90)90269-p

Google Scholar

[31] A. E. Hussein, N. Serpone, Kinetic-studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous-solutions over TiO2 supported on a glass matrix, J Phys Chem- US 92 (1988) 5726-5731.

DOI: 10.1021/j100331a036

Google Scholar

[32] V. Subramanian, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation of para-hydroxybenzoic acid: Relationship between substrate adsorption and photocatalytic degradation, Clean Products and Processes 2 (2000) 149–156.

DOI: 10.1007/s100980000080

Google Scholar

[33] A. Shafaei, M. Nikazar, M. Arami, Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: Comparative study, Desalination 252 (2010) 8–16.

DOI: 10.1016/j.desal.2009.11.008

Google Scholar

[34] Miroslav M. Kosanic , Photocatalytic degradation of oxalic acid over TiO2 power, This article is not included in your organization's subscription. However, you may be able to access this article under your organization's agreement with Elsevier. J Photoch Photobio A 119 (1998).

Google Scholar

[35] D. W. Bahnemann, S. N. Kholuiskaya, R. Dillert , A. I. Kulak, A.I. Kokorin, Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles, Appl Catal B: Environ 36 (2002) 161-169.

DOI: 10.1016/s0926-3373(01)00301-0

Google Scholar

[36] K. Djebbar, A. Zertal, T. Sehili, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2 , Environ Technol. 27 (2006) 1191-1197.

DOI: 10.1080/09593332708618732

Google Scholar

[37] M. Lindner, D. W. Bahnemann, B. Hirthe, W. D. Griebler, Solar Water Detoxification: Novel TiO2 Powders as Highly Active Photocatalysts , J. Sol. Energy Eng. 119 (1997) 120-125.

DOI: 10.1115/1.2887890

Google Scholar

[38] M. Trillas, J. Peral, X. Donenech, Photocatalyzed degradation of phenol, 2, 4-dichlorophenol, phenoxyacetic acid and 2, 4-dichlorophenooxyacetic acid over TiO2 in a flow system, J. Chem. Tech. Biotechnol. 67 (1996) 237-242.

DOI: 10.1002/(sici)1097-4660(199611)67:3<237::aid-jctb567>3.0.co;2-4

Google Scholar

[39] Y. Inel, A. N. Okte, Photocatalytic degradation of malonic acid in aqueous suspensions of titanium dioxide: an initial kinetic investigation of CO2 photogeneration, J Photoch Photobio A 96 (1996) 175-180.

DOI: 10.1016/1010-6030(95)04288-1

Google Scholar

[40] C. S. Turchi, D. F. Ollis, Mixed reactant photocatalysis: intermediates and mutual rate inhibition, J Catal 11 (1989) 483-496.

DOI: 10.1016/0021-9517(89)90176-0

Google Scholar

[41] C. L. Le, C. Giannotti, J. Ouzzani, Photocatalytic degradation of 5-Nitro-1, 2, 4-Triazol-3-one NTO in aqueous suspention of TiO2. Comparison with fenton oxidation. , Chemosphere 38 (1999) 1561-1570.

DOI: 10.1016/s0045-6535(98)00376-2

Google Scholar

[42] H. M. Coleman, M. I. Abdullah, B. R. Eggins ,F. L. Palmer, Photocatalytic degradation of 17-β-oestradiol, oestriol and 17-α-wthynyloestradiol in water monitored using fluorescence spectroscopy, Appl Catal B: Environ 55 (2005) 23-30.

DOI: 10.1016/j.apcatb.2004.07.004

Google Scholar

[43] Y. Zang, R. Farnood, Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide, Appl Catal B: Environ 57 (2005) 275-282.

DOI: 10.1016/j.apcatb.2004.11.005

Google Scholar

[44] K. Mehrotra, G.S. Yablonsky, A. K. Ray , Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems, Chemosphere 60 (2005) 1427-1436.

DOI: 10.1016/j.chemosphere.2005.01.074

Google Scholar

[45] A. Mills, C. E. Holland, R. H. Davies, D. Worsley, D. , Photomineralization of salicylic acid: A kinetic study, J Photoch Photobio A 83 (1994) 257-263.

DOI: 10.1016/1010-6030(94)03825-2

Google Scholar

[46] M. Trillas, J. Peral, X. Domenech, Photo-oxidation of phenoxyacetic acid by TiO2-illuminated catalyst, Appl Catal B: Environ 3 (1993) 45-53.

DOI: 10.1016/0926-3373(93)80067-n

Google Scholar

[47] E. Pelizzetti, C. Minero, E. Borgarello, L. Tinucci, Photocatalytic activity and selectivity of titania colloids and particles prepared by sol-gel technique: photooxidation of phenol and atrazine, Langmuir 9 (1993) 2995-3001.

DOI: 10.1021/la00035a043

Google Scholar

[48] T. Noguchi, A. Fujishima, P. Sawanyama, K. Hashimoto, K. , Photocatalytic degradation of gaseous formaldehyde using TiO2 film, Environmental Science & Technology 32 (1998) 3831-3833.

DOI: 10.1021/es980299+

Google Scholar

[49] K. Tanaka,K. Padampole, K. , T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Research 34 (2000) 327-333.

DOI: 10.1016/s0043-1354(99)00093-7

Google Scholar

[50] A. Piscopo, D. Robert, J. V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution, Appl Catal B: Environ 35 (2001).

DOI: 10.1016/s0926-3373(01)00244-2

Google Scholar

[51] G. Dagan, M. Tomkiewicz, TiO2 aerogels for photocatalytic decontamination of aquatic environments, J Phys Chem- US 97 (1993) 12651-12655.

DOI: 10.1021/j100151a001

Google Scholar

[52] D. Chen, A. K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Research, 32 (1998) 3223-3234.

DOI: 10.1016/s0043-1354(98)00118-3

Google Scholar

[53] P. A. Babay, C. A. Emilio, R. E. Ferreyra, E. A. Gautier, R. T. Gettar, M. I. Litter, Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2, Water science and technology 44 (2001) 179-185.

DOI: 10.2166/wst.2001.0281

Google Scholar

[54] L. Cao, Z. Gao, S. L. Suib, T. N. Obee, S. O. Hay, J. D. Freihaut, Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. J Catal 196 (2000) 253–261.

DOI: 10.1006/jcat.2000.3050

Google Scholar

[55] J. Yuan, H. Hu, M. X. Chen, J. W. Shiand, W. F. Shangguan, (2008) Promotion effect of Al2O3-SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde, Catal Today 139 (2008) 140–145.

DOI: 10.1016/j.cattod.2008.08.016

Google Scholar

[56] J. Peral, D. F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation, J Catal 136 (1992) 554–565.

DOI: 10.1016/0021-9517(92)90085-v

Google Scholar

[57] R. Portela, B. Sanchez, J. M. Coronado, R. Candal, S. Suarez, Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal, Catal Today 129 (2007) 223–230.

DOI: 10.1016/j.cattod.2007.08.005

Google Scholar