Fabrication of Ti-Based Biodegradable Material Composites Prepared by Spark Plasma Sintering Method

Article Preview

Abstract:

This study aims at producing porous Ti filled with biodegradable materials for biomedical implants by means of spark plasma sintering method (SPS). To improve bone fixation and to obtain appropriate Young’s modulus as a medical implant material, we applied -tri calcium phosphate (-TCP) to the Ti-based composite. Ti/-TCP powder mixtures were sintered by SPS under applied stress of 45MPa with various temperatures and holding time. Vickers hardness (Hv) of obtained composite increased with increasing the holding time up to 10 min, and saturated hardness was approximately 750 Hv, which is extremely higher than that of bulk Ti. Hardness also increased as sintering temperature increased up to 1473 K. From the results of microstructure observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDXS), O- and P- containing Ti surrounded around Ti particle, and O diffused into Ti particle to a certain extent. X-ray diffraction results indicated several kinds of Ti-O and/or Ti-P formed in the specimen. Results indicated that it is the brittle phases formed during sintering that increased the hardness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2158-2161

Citation:

Online since:

June 2010

Export:

Price:

[1] H. Miyairi, Structure and Function of Biomaterials, Yokendo Ltd., Tokyo, (2001).

Google Scholar

[2] K. Hayashi, T. Tateishi, T. Sasada, K. Mabuchi, Biomaterials, Ohm Ltd., Tokyo, (1993).

Google Scholar

[3] S. Spriano, M. Bronzoni, F. Rosalbino, E. Verne, J. Mater. Sci. - Mater. Med. 16 (2005) 203-211.

Google Scholar

[4] E. P. Briggs, A. R. Walpole, P. R. Wilshaw, M. Karlsson, E. Pålsgård, J. Mater. Sci. - Mater. Med. 15 (2004) 1021-1029.

Google Scholar

[5] B. Labat, N. Demonet, A. Rattner, J. L. Aurelle, J. Rieu, J. Frey, A. Chamson, J Biomed. Mater. Res. 46 (1999) 331-336.

DOI: 10.1002/(sici)1097-4636(19990905)46:3<331::aid-jbm4>3.0.co;2-a

Google Scholar

[6] Y. Abe, T. Kokubo, T. Yamamuro, J. Mater. Sci. - Mater. Med. 1 (1990) 233-238.

Google Scholar

[7] J. Komotori, B. Lee, H. Dong, P. Dearnley, Wear 251 (2001) 1239-1249.

Google Scholar

[8] E. Verne, C. Fernandez Valles, C. Vitale Brovarone, S. Spriano, C. Moisescu, J. Eur. Ceram. Soc. 24 (2004) 2699-2705.

Google Scholar

[9] J. E. Ellingsen, S. P. Lyngstadaas, Bio-Implant Interface -Improving Biomaterials and Tissue Reactions-, CRC Press, Boca Raton, (2003).

DOI: 10.1201/9780203491430.ch18

Google Scholar

[10] N. Aoyagi, M. Oguro, S. Kamatsuchi, J. Jpn. Inst. Light Met. 59 (2009) 491-497.

Google Scholar

[11] M. Kon, L. M. Hirakata. , K. Asaoka, J. Biomed. Mater. Res. Pt. B Appl. Biomater. 68B (2004) 88-93.

Google Scholar

[12] Z. G. Liu, Y. M. Zhang, H. S. Li, J. Xu, Y. Y. Chen, K. D. Woo, Mater. Sci. Forum 614 (2009) 73-78.

Google Scholar

[13] F. Zhang, K. Lin, J. Chang, J. Lu, C. Ning, J. Eur. Ceram. Soc. 28 (2008) 539-545.

Google Scholar