Dielectric and Ferroelectric Properties of BaTi1-xSnxO3 Multilayered Ceramics

Article Preview

Abstract:

Multilayered BaTi1-xSnxO3 (BTS) ceramics with different Ti/Sn ratios were produced by pressing and sintering at 1420 oC for 2 hours. X-ray diffractometry, scanning electron microscopy and energy dispersive spectroscopy were used for structural, microstructural and elemental analysis, respectively. The dielectric and ferroelectric behavior of sintered samples was studied, too. It is found that in ingredient materials, with increasing Sn content, the tetragonality decreases; Curie temperature moves towards room temperature, while the maximum of the dielectric constant increases, and also, they becomes less hysteretic. It is noticed that multilayered BTS ceramics with different Ti/Sn contents have a broad transition temperature and show a relatively high dielectric constant in a wide temperature range. It is shown that dielectric properties of these materials may be modified by a combination of different BTS powders as well as layers number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-254

Citation:

Online since:

September 2007

Export:

Price:

[1] C.C.M. Wu, M. Kahn and W. Moy: J. Amer. Ceram. Soc. Vol. 97(3) (1996), p.809.

Google Scholar

[2] M. Koizumi: Int. J. SHS Vol. 6(3) (1997), p.295.

Google Scholar

[3] C. Chu, J. Zhu, Z. Yin and S. Wang: Mater. Sci. Eng. A Vol. 271 (1999), p.95.

Google Scholar

[4] J. -H. Jeon, Y. -D. Hahn and H. -D. Kim: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1653.

Google Scholar

[5] J. -H. Jeon: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1045.

Google Scholar

[6] W. -K. Chang, S. -F. Hsien, Y. -H. Lee, K. -N. Chen, N. -C. Wu and A.A. Wang: J. Mat. Sci. Vol. 33 (1998), p.1765.

Google Scholar

[7] N. Yasuda, H. Ohwa and S. Asano: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5099.

Google Scholar

[8] F.D. Morrison, D.C. Sinclair and A.R. West: J. Appl. Phys. Vol. 86 (1999), p.6355.

Google Scholar

[9] R. Farhi, M. El Marssi, A. Simon and J. Ravez: Eur. Phys. J. B Vol. 9 (1999), p.599.

Google Scholar

[10] N. Yasuda, H. Ohwa and K. Arai: J. Mat. Sci. Letters Vol. 16 (1997), p.1315.

Google Scholar

[11] T. Wang, X.M. Chen and X.H. Zheng: J. of Electroceramics Vol. 11 (2003), p.173.

Google Scholar

[12] R. Steinhausen, A. Kouvatov, H. Beige, H.T. Langhammer and H. -P. Abicht: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1677.

Google Scholar

[13] U. Straube, H.T. Langhammer, H. -P. Abicht and H. Beige: J. Eur. Ceram. Soc. Vol. 19 (1999), p.1171.

Google Scholar

[14] V. Mueller, L. Jager, H. Beige, H. -P. Abicht and T. Muller: Solid State Comm. Vol. 129 (2004), p.757.

Google Scholar

[15] R. Steinhausen, A. Kouvatov, C. Pientschke, H.T. Langhammer, W. Seifert, H. Beige and H. -P. Abicht: Integrated Ferroelectrics Vol. 63 (2004), p.15.

DOI: 10.1080/10584580490458360

Google Scholar

[16] S. Markovic, M. Mitric, N. Cvjeticanin and D. Uskokovic: Mat. Sci. Forum Vol. 518 (2006), p.241.

Google Scholar

[17] S. Markovic, M. Mitric, N. Cvjeticanin and D. Uskokovic: J. Eur. Ceram. Soc. Vol. 27 (2007), p.505.

Google Scholar

[18] H.T. Martirena and J.C. Burfoot: Ferroelectrics Vol. 7 (1974), p.151.

Google Scholar

[19] R.M. German: Sintering Theory and Practice (John Wiley & Sons, INC, New York, USA 1996).

Google Scholar

[20] H. Schmelz and A. Meyer: Ceram. Forum Int. Vol. 59 (1982), p.436.

Google Scholar