Thermal and Mechanical Properties of Mg-Cu(Ni)-Y(Gd) Amorphous Alloys

Article Preview

Abstract:

The thermal and mechanical characteristics of various Mg-Cu(Ni)-Y(Gd) metallic glassy alloys prepared by melt spinning are examined using differential scanning calorimetry (DSC), thermomechanical analyzer (TMA), and instrumental nanoindenter. The replacement of Y by Gd appears to benefit both the thermal and mechanical properties, while the replacement of Cu by Ni improves only the hardness and modulus, with the sacrifice of thermal characteristics. The amorphous Mg-Cu-Gd based alloys can be fabricated into rods with a diameter greater than 6 mm, with minimum porosity and reasonable toughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

1926-1931

Citation:

Online since:

March 2007

Export:

Price:

[1] W. Klement, R.H. Wilens and P. Duwez: Nature Vol. 187 (1960), p.869.

Google Scholar

[2] H. S. Chen: Acta Met. Vol. 22 (1974), p.1505.

Google Scholar

[3] T. Mosumoto: Materials Science of Amorphous Metals (Ohmu Publications, Tokyo 1982).

Google Scholar

[4] F. E. Luborsky: Amorphous Metallic Alloys (Butterworths Publications, London 1983).

Google Scholar

[5] A. Inoue, K. Ohtera, K. Kita and T. Masumoto: Jpn. J. Appl. Phys. Vol. 27 (1988), p.2248.

Google Scholar

[6] A. Inoue and T. Masumoto: Mater. Sci. Eng. Vol. A133 (1991), p.6.

Google Scholar

[7] A. Inoue, Y. Zhang and T. Masumoto: Mater. Trans. JIM Vol. 30 (1989), p.965.

Google Scholar

[8] A. Inoue, H. Yamaguchi, Y. Zhang and T. Masumoto: Mater. Trans. JIM Vol. 31 (1990), p.104.

Google Scholar

[9] A. Inoue, Y. Zhang and T. Masumoto: J. Non-Cryst. Solids Vol. 156-158 (1993), p.473.

Google Scholar

[10] P. Perez, M. Eddahbi, G. Garces, F. Sommer and P Adeva: Scripta Mater. Vol. 50 (2004), p.1039.

Google Scholar

[11] H. Men, W. T. Kim and D. H. Kim: J. Non-Cryst. Solids Vol. 337 (2004), p.29.

Google Scholar

[12] G. Yuan and A. Inoue: J. Alloys and Compounds Vol. 387 (2004), p.134.

Google Scholar

[13] Y. I. Golovin, V. I. Ivolgin, V. A. Khonik, K. Kitagawa and A. I. Tyurin: Scripta Mater. Vol. 45 (2001), p.947.

DOI: 10.1016/s1359-6462(01)01116-2

Google Scholar

[14] C. A. Schuh, A. C. Lund and T. G. Nieh, Acta Mater. Vol. 52 (2004), p.5879.

Google Scholar

[15] G. P. Zhang, W. Wang, B. Zhang, J. Tan and C. S. Liu: Scripta Mater. Vol. 52 (2005), p.1147.

Google Scholar

[16] U. Ramamurty, S. Jana, Y. Kawamura and K. Chattopadhyay: Acta Mater. Vol. 52 (2005), p.705.

Google Scholar

[17] H. Zhang, X. Jing, G. Subhash, L. J. Kecskes and R. J. Dowding: Acta Mater. Vol. 53 (2005), p.3849.

Google Scholar

[18] W. H. Wang: J. Non-Cryst. Solids Vol 351 (2005), p.1481.

Google Scholar

[19] B. Yang, M. Morrison, P.K. Liaw, C.T. Liu, R. A. Buchanan, and T.G. Nieh, J. Mater. Res. (2006) - in press.

Google Scholar