Microstructure Evolution and Aging Kinetics of Al-Mg-Si and Al-Mg-Si-Sc Alloys Processed by ECAP

Article Preview

Abstract:

A study was carried out on a ECAP processed Sc-containing Al-Mg-Si alloy and on a reference 6082 alloy to investigated grain structure evolution during severe plastic deformation and post-ECAP aging behaviour. The results showed that the mechanism of ultrafine structure development was substantially unchanged with respect to a reference Sc-free alloy. Also the aging sequence and precipitation kinetics of the two alloys revealed to be comparable. The ECAP processed samples of the 6082 reference alloy showed a clear recrystallization peak at temperatures in the range 315-360°C, depending on the amount of strain experienced, whereas the Sc-containing alloy retained its ultrafine structure up to temperatures well exceeding 450°C, under the conditions reproduced in a DSC temperature scan.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

493-498

Citation:

Online since:

January 2006

Export:

Price:

[1] V. Ocenasek, M. Slamova. Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys. Mater. Charact., 47 (2001) 157-162.

DOI: 10.1016/s1044-5803(01)00165-6

Google Scholar

[2] M.J. Jones, F.J. Humphreys. Interaction of recrystallization and precipitation : the effect of Al3Sc on the recrystalization behaviour of deformed aluminium. Acta Mater., 51 (2003) 2149- 2159.

DOI: 10.1016/s1359-6454(03)00002-8

Google Scholar

[3] V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Engng., A280 (2000) 30-36.

DOI: 10.1016/s0921-5093(99)00652-8

Google Scholar

[4] J. Royset, N. Ryum. Scandium in aluminium alloys. Int. Mater. Rev., 50, 1 (2005) 19-44.

Google Scholar

[5] J.D. Robson. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater., 52 (2004) 1409-1421.

DOI: 10.1016/j.actamat.2003.11.023

Google Scholar

[6] J.D. Robson, P.B. Prangnell. Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys. Mater. Sci. Engng., A352 (2003) 240-250.

DOI: 10.1016/s0921-5093(02)00894-8

Google Scholar

[7] Y.W. Riddle, T.H. Sanders. A study of coarsening, recrystalization and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys. Metall. Mater. Trans., 35A (2004) 341-350.

DOI: 10.1007/s11661-004-0135-3

Google Scholar

[8] A. Vinogradov, A. Washikita, K. Kitagawa, V.I. Kopylov. Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing. Mater. Sci. Engng., A349 (2003) 318-326.

DOI: 10.1016/s0921-5093(02)00813-4

Google Scholar

[9] K. Furuno, H. Akamatsu, K. Oh-Ishi, M. Furukawa, Z. Horita, T.G. Langdon. Microstructural development in equal channel angular pressing using a 60° die. Acta Mater., 52 (2004) 24972507.

DOI: 10.1016/j.actamat.2004.01.040

Google Scholar

[10] H.B. Geng, S.B. Kang, B.K. Min. High temperature tensile behaviour of ultra-fine grained Al3, 3Mg-0, 2Sc-0, 2Zr alloy by equal channel angular pressing. Mater. Sci. Engng., A373 (2004) 229-238.

DOI: 10.1016/j.msea.2004.01.047

Google Scholar

[11] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafinegrained Al-Mg alloys. Acta Mater., 50 (2002) 553-564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[12] P.J. Apps, M. Berta, P.B. Prangnell. The effects of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. Acta Mater., 53 (2005) 499-511.

DOI: 10.1016/j.actamat.2004.09.042

Google Scholar

[13] K. -T. Park, D. -Y. Hwang, Y. -K. Lee, Y. -K. Kim, D.H. Shin. High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation. Mater. Sci. Engng., A341 (2003) 273-281.

DOI: 10.1016/s0921-5093(02)00216-2

Google Scholar

[14] D.R. Herling, M. T. Smith. Superplastic microstructure of modified AA-5083 aluminium alloy processed by equal channel angular extrusion. Proc. Int. Symp. Ultrafine grained materials. Nashville, march 2000. Ed. R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, T.C. Lowe. TMS publisher (2000).

Google Scholar

[15] PP. Chattopadhyay, S. Datta, M.K. Banerjee. On the formation of V-phase in mechanically alloyed AlMgSi-SiCp metal matrix composites with trace scandium additions. Mater. Sci. Engng., A333 (2002) 67-71.

DOI: 10.1016/s0921-5093(01)01826-3

Google Scholar

[16] G. Angella, P. Bassani, A. Tuissi, M Vedani. Intermetallic particle evolution during ECAP processing of a 6082 alloy. Mater. Trans., 45, 7, (2004) 2182-2186.

DOI: 10.2320/matertrans.45.2182

Google Scholar

[17] G. Angella, P. Bassani, A. Tuissi, M. Vedani. Aging behaviour and mechanical properties of a solution treated and ECAP processed 6082 alloy. Mater. Trans., 45, 7, (2004) 2282-2287.

DOI: 10.2320/matertrans.45.2282

Google Scholar

[18] Y. Iwahashi, J. Wang, M. Horita, M. Nemoto, T.G. Langdon. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater., 35 (1996) 143-146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar

[19] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon. An investigation of microstructural evolution during equal channel angular pressing. Acta Mater., 45 (1997) 4733-4741.

DOI: 10.1016/s1359-6454(97)00100-6

Google Scholar

[20] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon. Influence of channel angle on the development of ultrafine grains in equal channel angular pressing. Acta Mater., 46 (1998) 1589-1599.

DOI: 10.1016/s1359-6454(97)00355-8

Google Scholar

[21] A. Gholinia, P.B. Prangnell, M.V. Markushev. The effect of strain path on the development of deformation structure in severely deformed aluminium alloys processed by ECAE. Acta Mater., 48 (2000) 1115-1130.

DOI: 10.1016/s1359-6454(99)00388-2

Google Scholar