Deformation Twins Formed in Nanocrystalline Materials

Article Preview

Abstract:

Deformation twins have been oberved in nanocrystalline (NC) Al synthsized by cryogenic ball-milling and in NC Cu processed by high-pressure torsion under room temperature and at a very low strain rate. They were found formed by partial dislocations emitted from grain boundaries. This paper first reviews experimental evidences on deformation twinning and partial dislocation emissions from grain boundaries, and then discusses recent analytical models on the nucleation and growth of deformation twins. These models are compared with experimental results to establish their validity and limitations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

125-132

Citation:

Online since:

January 2006

Authors:

Export:

Price:

[1] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. Vol. 17 (2002), p.5.

Google Scholar

[2] X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, and A.K. Mukherjee, Appl. Phys. Lett. Vol. 81 (2002), p.823.

Google Scholar

[3] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev, Appl. Phys. Lett. Vol. 79 (2001), p.611.

Google Scholar

[4] J. Schiøtz, F. D. Ditolla, K. W. Jacobsen, Nature Vol. 391 (1998), p.561.

Google Scholar

[5] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater. Vol. 51 (2003), p.387.

Google Scholar

[6] H. Van Swygenhoven, Science Vol. 296 (2002), p.66.

Google Scholar

[7] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Nature Mater. Vol. 1 (2002), p.45.

Google Scholar

[8] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Science Vol. 300 (2003), p.1275.

Google Scholar

[9] H. Van Swygenhoven, P.M. Derlet, A. Hasnaoui, Phys. Rev. B Vol. 66 (2002), p.024101.

Google Scholar

[10] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter, Acta Mater. Vol. 50 (2002), p.5005.

Google Scholar

[11] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nature Mater. Vol. 3 (2004), p.43.

Google Scholar

[12] X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He and Y.T. Zhu, Appl. Phys. Lett. Vol. 83 (2003), p.632.

Google Scholar

[13] X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu, Appl. Phys. Lett. Vol. 83 (2003), p.5062.

Google Scholar

[14] X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia, Phil. Mag. Vol. 83 (2003), p.3065.

Google Scholar

[15] X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev and D.V. Gunderov, Appl. Phys. Lett. Vol. 84 (2004), p.592.

Google Scholar

[16] H. Rösner, J. Markmann, J. Weissmüller, Phil. Mag. Lett. Vol. 84 (2004), p.321.

Google Scholar

[17] M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, NanoStruct. Mater. Vol 6 (1995), p.689.

Google Scholar

[18] Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Science Vol. 305 (2004), p.654.

Google Scholar

[19] X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, H.F. Xu, Appl. Phys. Lett. Vol. 84 (2004), p.3564.

Google Scholar

[20] S. Hai, E.B. Tadmor, Acta Mater. Vol. 51 (2003), p.117.

Google Scholar

[21] C.D. Liu, M.N. Bassim, D.X. You, Acta Met. Mat. Vol. 42 (1994), p.3695.

Google Scholar

[22] N. Hansen, B. Ralph, Acta Met. Vol. 30 (1982), p.411.

Google Scholar

[23] O. Johari and G. Thomas, Acta Metall. Vol. 2 (1964), p.1153.

Google Scholar

[24] C.S. Smith, Trans. Met. Soc. AIME. Vol. 212 (1958), p.574.

Google Scholar

[25] T.H. Blewitt, R. Coltman, and J.K. Redman, J. Appl. Phys. Vol. 28 (1957), p.651.

Google Scholar

[26] M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. Vol. 49 (2001) p.4025.

Google Scholar

[27] E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. Vol. 30A (1999) p.1223.

Google Scholar

[28] X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, J. Appl. Phys. Vol. 96 (2004P p.636.

Google Scholar

[29] J. Schiøtz, K.W. Jacobsen, Science Vol. 301 (2003), p.1357.

Google Scholar

[30] R.J. Asaro, P. Krysl, B. Kad, Phil. Mag. Lett. Vol. 83 (2003) p.733.

Google Scholar

[31] Y.T. Zhu, X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, Appl. Phys. Lett. Vol. 85 (2004), p.5049.

Google Scholar

[32] I. Kovács, L. Zsoldos, Dislocation and Plastic Deformation (Pergamon Press, Oxford, 1973).

Google Scholar

[33] J. P. Hirth, J. Lothe, Theory of Dislocations (John Wiley \& Sons, New York, 1982).

Google Scholar

[34] V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, Acta Mater., Vol. 49 (2001), p.2713.

Google Scholar

[35] H. Van Swygenhoven, P. M. Derlet, and A. G. Frøseth, Nature Mat. Vol. 3 (2004), p.399.

Google Scholar