Mechanical Properties and Microstructure Evolution of Typical Over-Aging State Al-Zn-Mg-Cu Alloy during Thermal Exposure

Article Preview

Abstract:

Al-Zn-Mg-Cu alloy have been widely used in aerospace industry. However, there is still a lack of research on thermal stability of Al-Zn-Mg-Cu alloy products. In the present work, an Al-Zn-Mg-Cu alloy with T79 and T74 states was placed in the corresponding environment for thermal exposure experiments. Performance was measured by tensile strength, hardness and electrical conductivity. In this paper, precipitation observation was analyzed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The precipitations of T79 state alloy were GPⅡ zone, η' phase and η phase while the ultimate tensile strength, hardness and electrical conductivity were 571MPa, 188.2HV and 22.2MS×m-1, respectively. The mechanical property of T79 state alloy decreased to 530MPa and 168.5HV after thermal exposure. The diameter of precipitate increased and the precipitations become η' and η phase at the same time. During the entire thermal exposure, T74 state alloy had the same mechanical property trend as T79 state alloy. The precipitate diameter also increased while the types of precipitate did not change under thermal exposure. The size of precipitates affected the choice of dislocation passing through the particles to affect the mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1026)

Pages:

84-92

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] A. Azarniya, A. K. Taheri, Rencent advances in aging of 7xxx series aluminum alloy: a physical metallurgy perspective, J. Alloys Compd. 781 (2019) 945-983.

DOI: 10.1016/j.jallcom.2018.11.286

Google Scholar

[2] A. Heinz, A. Haszler, C. Keidel, et al. Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A. 280 (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[3] W. C. Yang, S. X. Ji, Q. Zhang, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various aging conditions and interface analysis of η' precipitate, Mater. Des. 85 (2015) 752-761.

DOI: 10.1016/j.matdes.2015.06.183

Google Scholar

[4] E. M. Mazzer, C. R. M. Afonso, M. Galano, et al. Microstructure evolution and mechanical properties of Al–Zn–Mg–Cu alloy reprocessed by spray-forming and heat treated at peak aged condition, J. Alloys Compd. 579 (2013) 169-173.

DOI: 10.1016/j.jallcom.2013.06.055

Google Scholar

[5] E. W. Lee, T. Oppenheim, K. Robinson, et al. The effect of thermal exposure on the electrical conductivity and static mechanical behavior of several age hardenable aluminum alloys, Eng. Failure Anal. 14 (2007) 1538-1549.

DOI: 10.1016/j.engfailanal.2006.12.008

Google Scholar

[6] D. Ortiz, J. Brown, M. Abdelshehid, et al. The effects of prolonged thermal exposure on the mechanical properties and fracture toughness of C458 aluminum–lithium alloy, Eng. Failure Anal. 13 (2006) 170-180.

DOI: 10.1016/j.engfailanal.2004.10.008

Google Scholar

[7] Jabra J, Romios M, Lai J, et al. The effect of thermal exposure on the mechanical properties of 2099-T6 die forgings, 2099-T83 extrusions, 7075-T7651 plate, 7085-T7452 die forgings, 7085-T7651 plate, and 2397-T87 plate aluminum alloys, J. Mater. Eng. Perform. 15 (2006) 601-607.

DOI: 10.1361/105994906x136142

Google Scholar

[8] P. Dai, X. Luo, Y. Yang, et al. High temperature tensile properties, fracture behaviors and nanoscale precipitate variation of an Al-Zn-Mg-Cu alloy, Prog. Nat. Sci. Mater. Int. 30 (2020) 63-73.

DOI: 10.1016/j.pnsc.2020.01.007

Google Scholar

[9] J. G. Zhao, Z. Y. Liu, S. Bai, et al. Effect of various aging treatment on thermal stability of a novel Al-Zn-Mg-Cu alloy for oil drilling, Mater. Sci. Eng. A. 803 (2020) 140490.

DOI: 10.1016/j.msea.2020.140490

Google Scholar

[10] K. Shen, J. Chen, Z. Yin. TEM study on microstructures and properties of 7050 aluminum alloy during thermal exposure, Trans. Nonferrous Metals Soc. 19 (2009) 1405-1409.

DOI: 10.1016/s1003-6326(09)60041-8

Google Scholar

[11] K. Wen, B. Xiong, Y. Zhang, et al. Measurement and Theoretical Calculation Confirm the Improvement of T7651 Aging State Influenced Precipitation Characteristics on Fatigue Crack Propagation Resistance in an Al–Zn–Mg–Cu Alloy, Met. Mater. Int. (2019).

DOI: 10.1007/s12540-019-00446-5

Google Scholar

[12] P. K. Rout, M. M. Ghosh, K. S. Ghosh. Microstructural, mechanical and electrochemical behaviour of a 7017 Al–Zn–Mg alloy of different tempers, Mater. Charact. 104 (2015) 49-60.

DOI: 10.1016/j.matchar.2015.06.016

Google Scholar

[13] G. Waterloo, V. Hansen, J. Gjonnes, et al. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu,Zr) alloys, Mater. Sci. Eng. A. 303 (2001) 226-233.

DOI: 10.1016/s0921-5093(00)01883-9

Google Scholar

[14] G. Sha, A. Cerezo. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Mater. 52 (2004) 4503-4516.

DOI: 10.1016/j.actamat.2004.06.025

Google Scholar

[15] K. Ma, H. Wen, T. Hu, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater. 62 (2014) 141-155.

DOI: 10.1016/j.actamat.2013.09.042

Google Scholar

[16] A. Kverneland, V. Hansen, R. Vincent, et al. Structure analysis of embedded nano-sized particles by precession electron diffraction. η'-precipitate in an Al-Zn-Mg alloy as example, Ultramicroscopy. 106 (2006) 492-502.

DOI: 10.1016/j.ultramic.2006.01.009

Google Scholar

[17] J. M. Fragomeni, B. M. Hillberry, A micromechanical method for predicting the precipitation hardening response of particle strengthened alloys hardened by orderer precipitates, Acta Mech. 138 (1999) 185-210.

DOI: 10.1007/bf01291844

Google Scholar

[18] G. E. Pellissier, S. M. Purdy, Stereology and Quantitative Metallography, Addison-Wesley Publishing Company, USA, 1972, p.112.

Google Scholar

[19] H. C. Fang, H. Chao, K. H.Chen, et al. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy, J. Alloys Compd. 622 (2015) 166-173.

DOI: 10.1016/j.jallcom.2014.10.044

Google Scholar

[20] E. Arzt. Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater. 46 (1998) 5611-5626.

DOI: 10.1016/s1359-6454(98)00231-6

Google Scholar

[21] P. Dai, X. Luo, Y. Yang, et al. Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure, Mater. Sci. Eng. A. 729 (2018) 411-422.

DOI: 10.1016/j.msea.2018.05.092

Google Scholar