Conversion of Calcified Algae (Halimeda sp) and Hard Coral (Porites sp) to Hydroxyapatite

Article Preview

Abstract:

Calcium phosphate materials can be produced using a number of wet methods that are based on hydrothermal or co-precipitation methods that might use acidic or basic chemical environments. In our previously published works, we have investigated calcium phosphates such as monetite, hydroxyapatite, and whitlockite which were successfully produced by mechano-chemical methods and/or hydrothermal treatments from a range of marine shells and corals which were obtained from the Great Barrier Reef. The aim of the current work was to analyze and compare the mechanisms of conversion of one hard coral species and one calcified algae species from the Great Barrier Reef.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-161

Citation:

Online since:

November 2017

Export:

Price:

* - Corresponding Author

[1] S. V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials. 31 (2010) 1465-1485.

DOI: 10.1016/j.biomaterials.2009.11.050

Google Scholar

[2] R. Li, Dimensionally and morphologically controlled growth of calcium phosphate crystals by an organic-free hydrothermal process, Ceram. Int. 42 (2016) 17387-17397.

DOI: 10.1016/j.ceramint.2016.08.038

Google Scholar

[3] J. Torrent-Burgues, R. Rodriguez‐Clemente, Hydroxyapatite Precipitation in a Semibatch Process, Cryst. Res. Technol. 36 (2001) 1075-1082.

DOI: 10.1002/1521-4079(200110)36:8/10<1075::aid-crat1075>3.0.co;2-e

Google Scholar

[4] J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int. 29 (2003) 629-633.

DOI: 10.1016/s0272-8842(02)00210-9

Google Scholar

[5] B. Ben-Nissan, Natural bioceramics: from coral to bone and beyond, Curr. Opin. Solid State Mater. Sci. 7 (2003) 283-288.

DOI: 10.1016/j.cossms.2003.10.001

Google Scholar

[6] N. Mohan, R. Palangadan, H. Varma, Hydroxyapatite scaffolds constituting highly oriented crystals derived from synthetic precursors by hydrothermal reactions, Ceram. Int. 42 (2016) 17259-17268.

DOI: 10.1016/j.ceramint.2016.08.021

Google Scholar

[7] J. Chou, R. Samur, L. S. Ozyegin, B. Ben-Nissan, F. N. Oktar, I. J. Macha, An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells, J. Aust. Ceram. Soc. 49 (2013).

Google Scholar

[8] I. J. Macha, U. Boonyang, S. Cazalbou, B. Ben-Nissan, C. Charvilat, F. N. Oktar, D. Grossin, Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate, J. Aust. Ceram. Soc. 51 (2015) 149-159.

Google Scholar

[9] M. Sivakumar, T. S. S. Kumar, K. L. Shantha, K. P. Rao, Development of hydroxyapatite derived from Indian coral, Biomaterials. 17 (1996) 1709-1714.

DOI: 10.1016/0142-9612(96)87651-4

Google Scholar

[10] G. Felício-Fernandes, M. Laranjeira, Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterization, 'Quím. Nova, 23 (2000) 441-446.

DOI: 10.1590/s0100-40422000000400002

Google Scholar

[11] D. W. Green, B. Ben-Nissan, K. S. Yoon, B. Milthorpe, H. Jung, Natural and Synthetic Coral Biomineralization for Human Bone Revitalization, Trends Biotechnol., 35 (2017) 43-54.

DOI: 10.1016/j.tibtech.2016.10.003

Google Scholar

[12] J. Hu, J. J. Russell, B. Ben-Nissan, R. Vago, Production and analysis of hydroxyapatite from Australian corals via hydrothermal process, J. Mater. Sci. Lett. 20 (2001) 85-87.

Google Scholar

[13] D. M. Roy, S. K. Linnehan, Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange, Nat. 247 (1974) 220-222.

DOI: 10.1038/247220a0

Google Scholar

[14] J. Chou, J. Hao, B. Ben-Nissan, B. Milthorpe, M. Otsuka, Coral Exoskeletons as a Precursor Material for the Development of a Calcium Phosphate Drug Delivery System for Bone Tissue Engineering, Biol. Pharm. Bull. 36 (2013) 1662-1665.

DOI: 10.1248/bpb.b13-00425

Google Scholar