Confinement of Masonry Columns with Steel and Basalt FRCM Composites

Article Preview

Abstract:

The rehabilitation of existing masonry elements by means of jacketing of columns using composite materials is becoming a remarkable technique in several applications that aim to increase the strength of existing masonry buildings. Fiber reinforced cementitious matrix (FRCM) composites are a newly developed strengthening system that consist of high-strength fibers embedded in a cementitious grout and externally bonded to the substrate. High resistance to fire and high temperatures, ease of handling during application, and vapor permeability with the substrate are some of the characteristics that make FRCMs a promising alternative to traditional organic composites such as fiber reinforced polymer (FRP) composites. This work presents the results of an experimental study carried out to understand the behavior of masonry columns with a square cross-section confined by steel and basalt fiber sheets embedded in a mortar matrix subjected to monotonic concentric compressive load. The effectiveness of the confinement is studied in terms of load-bearing capacity with respect to unconfined columns. The effect of corner radius for columns confined with basalt fibers is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

342-349

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] T. D'Antino, C. Carloni, L. H. Sneed, C. Pellegrino. Matrix–fiber bond behavior in PBO FRCM composites: A fracture mechanics approach. Engineering Fracture Mechanics, 117, (2014) 94-111.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[2] L. H. Sneed, T. D'Antino, C. Carloni. Investigation of bond behavior of PBO fiber-reinforced cementitious matrix composite-concrete interface. ACI Materials Journal 111. 1-6 (2014): 1-12.

DOI: 10.14359/51686604

Google Scholar

[3] C. Carloni, T. D'Antino, L. H. Sneed, C. Pellegrino. Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate. Journal of Engineering Mechanics, 141(6), (2014) 04014165.

DOI: 10.1061/(asce)em.1943-7889.0000883

Google Scholar

[4] A. D'Ambrisi, F. Focacci. Flexural strengthening of RC beams with cement-based composites, J Comp Constr 15: 5 (2011) 707-720.

DOI: 10.1061/(asce)cc.1943-5614.0000218

Google Scholar

[5] Loreto, L. Leardini, D. Arboleda, A. Nanni. Performance of RC slab-type elements strengthened with fabric reinforced cementitious matrix composites. J Compos Constr 18: 3 (2013) 1–9.

DOI: 10.1061/(asce)cc.1943-5614.0000415

Google Scholar

[6] C. Pellegrino, T. D'Antino. Experimental behavior of existing precast prestressed reinforced concrete elements strengthened with cementitious composites. Compos - Part B: Eng. 55 (2013) 31-40.

DOI: 10.1016/j.compositesb.2013.05.053

Google Scholar

[7] L.H. Sneed, S. Verre, C. Carloni, C., L. Ombres. Flexural behavior of RC beams strengthened with steel-FRCM composite. Eng Struct 127 (2016) 686-699.

DOI: 10.1016/j.engstruct.2016.09.006

Google Scholar

[8] M.Y. Alabdulhadya, L.H. Sneed, C. Carloni. Torsional behavior of RC beams strengthened with PBO-FRCM composite – an experimental study. Eng Struc 136 (2017) 393–405.

DOI: 10.1016/j.engstruct.2017.01.044

Google Scholar

[9] C.G. Papanicolaou, T.C. Triantafillou, K. Karlos, M. Papathanasiou. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Mater Struct 40 (2007) 1081-1097.

DOI: 10.1617/s11527-006-9207-8

Google Scholar

[10] M. Corradi, A. Borri, G. Castori, R. Sisti. Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Compos - Part B: Eng 64 (2014) 33–42.

DOI: 10.1016/j.compositesb.2014.03.022

Google Scholar

[11] M.R. Valluzzi, F. Daporto, E. Garbin, M. Panizza. Out-of-plane behavior of infill masonry panels strengthened with composite materials. Mater Struct 47 (2014) 2131-2145.

DOI: 10.1617/s11527-014-0384-6

Google Scholar

[12] S. Babaeidarabad, F. De Caso, A. Nanni. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. J Compos Constr 18: 2 (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000441

Google Scholar

[13] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano. Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations. Compos Struct 149: 1 (2016) 184-196.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[14] V. Giamundo, G.P. Lignola, G. Maddaloni, A. Balsamo, A. Prota, G. Manfredi. Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Compos - Part B: Eng 70 (2015) 53-63.

DOI: 10.1016/j.compositesb.2014.10.039

Google Scholar

[15] G. Ramaglia, G.P. Lignola, A. Balsamo, A. Prota, G. Manfredi. Seismic strengthening of masonry vaults with abutments using Textile Reinforced Mortar. J Compos Constr, in press. DOI: 10. 1061/(ASCE)CC. 1943-5614. 000073.

DOI: 10.1061/(asce)cc.1943-5614.0000733

Google Scholar

[16] L. Bednarz, A. Gorski, J. Jasienko, E. Rusinski. Simulations and analyses of arched brick structures. Autom Constr 20: 12 (2011) 741-754.

Google Scholar

[17] Ł. Hojdys, P. Krajewski. Laboratory tests on masonry vaults with backfill strengthened at the extrados. Key Eng Mat 624 (2015) 510-517.

DOI: 10.4028/www.scientific.net/kem.624.510

Google Scholar

[18] Carloni C., Mazzotti C., Savoia, M., and Subramaniam K.V. (2015). Confinement of masonry columns with FRCM composites. Key Eng Mat 624 (2015) 644-651.

DOI: 10.4028/www.scientific.net/kem.624.644

Google Scholar

[19] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou. Mortar-based systems for externally bonded strengthening of masonry. Mater Struct 47 (2014) 2021-(2037).

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[20] G. Carozzi, C. Poggi, Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening, Compos - Part B: Eng. 70 (2015) 215-230.

DOI: 10.1016/j.compositesb.2014.10.056

Google Scholar

[21] M. Santandrea, I. A. O. Imohamed, C. Carloni, C. Mazzotti, S. de Miranda, F. Ubertini, A study of the debonding mechanism in steel and basalt FRCM-masonry joints, in: Brick and Block Masonry: Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016., CRC Press, (2016).

DOI: 10.1201/b21889-52

Google Scholar

[22] T.D. Krevaikas, T.C. Triantafillou. Masonry confinement with fiber-reinforced polymers. J Compos Constr 9: 2 (2005) 128–135.

DOI: 10.1061/(asce)1090-0268(2005)9:2(128)

Google Scholar

[23] A. Borri, G. Castori, M. Corradi. Masonry columns confined by steel fiber composite wraps. Materials 4(1) (2011) 311-326.

DOI: 10.3390/ma4010311

Google Scholar

[24] L. Ombres. Confinement effectiveness in eccentrically loaded masonry columns strengthened by fiber reinforced cementitious matrix (FRCM) jackets. Key Eng Mat 624 (2015) 551-558.

DOI: 10.4028/www.scientific.net/kem.624.551

Google Scholar

[25] CEN, EN 772-1, 2011. Methods of test for masonry units – Part 1: Determination of compressive strength. A1: 2015. Brussels: CEN.

Google Scholar

[26] CEN, EN 1015-11: 1999. Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar. A1: 2006. Brussels: CEN.

DOI: 10.3403/01905442

Google Scholar

[27] Henzel J., Karl S., 1987, Determination of strength of mortar in the joints of masonry by compression tests on small specimens, «Darmstadt Concrete», 2, 123-136.

Google Scholar

[28] Kerakoll S. p.A. – web site: <www. kerakoll. com> [accessed Feb 2017].

Google Scholar