Analysis of Possible Application of Temperature Dependences of Processed Materials’ Physical and Mechanical Properties to Define the Maximum Workability Temperature

Article Preview

Abstract:

The results of experimental studies of the different machinability group materials’ characteristics, including tool steel DIN C125W, heat-resistant steel (C - 0.1%, Si - 0.6%, Cu - 0.3%, W - 0.1%, Mn - 0.4%, Ni - 23%, P - 0.01%, Cr - 12%, S - 0.01%, V - 0.01, Mo - 1.5%, Ti - 3%, V - 0.001%, Al - 0.6), nickel-based superalloy (Fe - 4%, C - 0.1%, Si - 0.6%, Mn - 0.5%, S - 0.01%, P - 0.01%, Cr - 15%, Ce - 0.01%, Mo - 4%, W - 6%, V - 0.3%, Ti - 2%, Al - 2%, B - 0.01%), the changes in the minimum surface wear, maximum cutting path, and cutting temperature in the processing of these materials, as well as the experimental data analysis showed that the extreme values of changes in the materials’ physical and mechanical properties under the temperature impact can be defined as the minimum surface wear temperature and maximum cutting path temperature, that is, the conditions corresponding to the maximum workability of the materials. It is possible to use the materials physical and mechanical property dependence on temperature for defining the maximum material workability temperature when processing it by cutting. The article suggests a method to define the maximum material workability temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-118

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] M. S. Ostapenko, D. S. Vasilega. An industrial and sociological research of consumers' requirements to lathing tools, Key Eng. Mater. 684 (2016) 429-434.

DOI: 10.4028/www.scientific.net/kem.684.429

Google Scholar

[2] E. V. Artamonov, M. S. Ostapenko, D. S. Vasilega. Improvement of modular tooling systems' application efficiency based on qualimetric evaluation, World Appl. Sci. J. 25(9) (2013) 1275-1279.

Google Scholar

[3] M. S. Ostapenko, D. S. Vasilega. Method of metal-cutting tool quality evaluation, Appl. Mech. Mater. 379 (2013) 49-55.

DOI: 10.4028/www.scientific.net/amm.379.49

Google Scholar

[4] D. S. Vasilega, M. S. Ostapenko. Metal lathing efficiency improvement by using the assembly machine tools quality evaluation technique, Key Eng. Mater. 684 (2016) 421-428.

DOI: 10.4028/www.scientific.net/kem.684.421

Google Scholar

[5] E. V. Artamonov, D. S. Vasilega, A. M. Tveryakov. Increasing the machining efficiency of components made of hard-processing materials, Appl. Mech. Mater. 770 (2015) 34-39.

DOI: 10.4028/www.scientific.net/amm.770.34

Google Scholar

[6] M. S. Ostapenko, A. M. Tveryakov. Enhancement of the assembly lathing tools quality evaluation methodology, Key Eng. Mater. 684 (2016) 435-439.

DOI: 10.4028/www.scientific.net/kem.684.435

Google Scholar

[7] E. V. Artamonov, D. S. Vasilega, M. S. Ostapenko. Methods of considering reliability in the composite metal cutting tools' quality evaluation procedure, Appl. Mech. Mater. 770 (2015) 216-220.

DOI: 10.4028/www.scientific.net/amm.770.216

Google Scholar

[8] Y. Klochkov, A. Its, I. Vasilieva. Development of FMEA method with the purpose of can stock production quality assessment, Key Eng. Mater. 684 (2016) 473-476.

DOI: 10.4028/www.scientific.net/kem.684.473

Google Scholar

[9] A. D. Makarov. Optimization of Cutting Processes, M. : Mechanical Engineering (1976) 278.

Google Scholar

[10] E. V. Artamonov, D. V. Vasilyev. Determining the optimal cutting speed in turning by composite cutters on the basis of the chip, Russian Eng. Res. 34(6) (2014) 404-405.

DOI: 10.3103/s1068798x14060069

Google Scholar

[11] E. V. Artamonov, D. S. Vasilega, A. M. Tveryakov. Determining the hard-alloy cutting plates' maximum-performance temperature, Russian Eng. Res. 34(6) (2014) 402-403.

DOI: 10.3103/s1068798x14060057

Google Scholar

[12] E. V. Artamonov, M. O. Chernyshov, T. E. Pomigalova, D. V. Vasilyev. Extending the life of replaceable cutting plates in composite tools, Russian Eng. Res. 35(1) (2015) 61-63.

DOI: 10.3103/s1068798x15010049

Google Scholar

[13] V. P. Astakhov, M. O. M. Osman. Correlations amongst Process Parameters in Metal Cutting and their Use for Establishing the Optimum Cutting Speed, J. Mater. Process. Technol. 62(1-3) (1996) 175-179.

DOI: 10.1016/0924-0136(95)02225-2

Google Scholar

[14] N. N. Zorev. Metal Cutting Mechanics, Pergamon, London (1966).

Google Scholar