Synthesis and Sintering of Magnesium Aluminate Spinel Nanopowders Prepared by Precipitation Method using Ammonium Hydrogen Carbonate as a Precipitant

Article Preview

Abstract:

Magnesium aluminate spinel (MgAl2O4) is widely used in many engineering applications due to its high melting point (2135°C), high mechanical strength, chemical inertness, and good optical properties. Precipitation method is recognized as a convenient and cost-effective method for the synthesis of nanopowders. In this present work, MgAl2O4 nanopowders were prepared by precipitation method using ammonium hydrogen carbonate as a precipitant. The precipitated precursors were a mixture of ammonium dawsonite (NH4Al (OH)2CO3·H2O) and hydrotalcite (Mg6Al2(CO3)(OH)16·4H2O). After calcining at 1100°C for 2 hours, The MgAl2O4 nanopowders with particle size of 20-170 nm were obtained. The sinterability of the MgAl2O4 nanopowders was evaluated by sintering compacts of the MgAl2O4 nanopowders at temperature of 1300-1650°C for 2 hours. The relative density of the sintered MgAl2O4 ceramics reached about >97% of theoretical density after sintering at 1500°C for 2 hours. The Vicker’s hardness of the sintered ceramics reached a value of 1414 HV (13.9 GPa) after sintering at 1650°C for 2 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-229

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Y. Yajima, Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant, J. Eur. Ceram. Soc. 21 (2001) 139-148.

DOI: 10.1016/s0955-2219(00)00188-6

Google Scholar

[2] G.D.B. Nuernberg, E.L. Foletto, L.F.D. Probst, C.E.M. Campos, N.L.V. Carreño, M.A. Moreira, A novel synthetic route for magnesium aluminate (MgAl2O4) particles using metal–chitosan complexation method, Chem. Eng. J. 193–194 (2012) 211-214.

DOI: 10.1016/j.cej.2012.04.054

Google Scholar

[3] A.E. Lavat, M.C. Grasselli, E.G. Lovecchio, Effect of α and γ polymorphs of alumina on the preparation of MgAl2O4-spinel-containing refractory cements, Ceram. Int. 36 (2010) 15-21.

DOI: 10.1016/j.ceramint.2009.06.015

Google Scholar

[4] I. Omkaram, B. Vengala Rao, S. Buddhudu, Photoluminescence properties of Eu3+: MgAl2O4 powder phosphor, J. Alloys Compd. 474 (2009) 565-568.

DOI: 10.1016/j.jallcom.2008.06.140

Google Scholar

[5] L. Esposito, A. Piancastelli, P. Miceli, S. Martelli, A thermodynamic approach to obtaining transparent spinel (MgAl2O4) by hot pressing, J. Eur. Ceram. Soc. 35 (2015) 651-661.

DOI: 10.1016/j.jeurceramsoc.2014.09.005

Google Scholar

[6] T.J. Mroz, T.M. Hartnett, J.M. Wahl, L.M. Goldman, J. Kirsch, W.R. Lindberg, Recent advances in spinel optical ceramic, International Society for Optics and Photonics, (2005) 64-70.

DOI: 10.1117/12.607593

Google Scholar

[7] J. Kelly, O. Graeve, Mechanisms of Convention Nanodensification and Field Assisted Processes, in: R. Castro, K. v. Benthem, Springer, Berlin Heidelberg, 2013, 57-95.

Google Scholar

[8] R. Sarkar, S. Sahoo, Effect of raw materials on formation and densification of magnesium aluminate spinel, Ceram. Int. 40 (2014) 16719-16725.

DOI: 10.1016/j.ceramint.2014.08.037

Google Scholar

[9] X. Zhang, Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support, Mater. Chem. Phys. 116 (2009) 415-420.

DOI: 10.1016/j.matchemphys.2009.04.012

Google Scholar

[10] W. Liu, J. Yang, H. Xu, Y. Wang, S. Hu, C. Xue, Effects of chelation reactions between metal alkoxide and acetylacetone on the preparation of MgAl2O4 powders by sol–gel process, Adv. Powder Technol. 24 (2013) 436-440.

DOI: 10.1016/j.apt.2012.09.006

Google Scholar

[11] R. Ianoş, I. Lazău, C. Păcurariu, P. Barvinschi, Solution combustion synthesis of MgAl2O4 using fuel mixtures, Mater. Res. Bull. 43 (2008) 3408-3415.

DOI: 10.1016/j.materresbull.2008.02.003

Google Scholar

[12] C.T. Wang, L.S. Lin, S.J. Yang, Preparation of MgAl2O4 Spinel Powders via Freeze-Drying of Alkoxide Precursors, J. Am. Ceram. Soc. 75 (1992) 2240-2243.

DOI: 10.1111/j.1151-2916.1992.tb04490.x

Google Scholar

[13] S. Sanjabi, A. Obeydavi, Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol–gel method, J. Alloys Compd. 645 (2015) 535-540.

DOI: 10.1016/j.jallcom.2015.05.107

Google Scholar

[14] K. Prodromou, A. Pavlatou-Ve, Formation of aluminum hydroxides as influenced by aluminum salts and bases, Clays Clay Miner. 43 (1995) 111-115.

DOI: 10.1346/ccmn.1995.0430113

Google Scholar

[15] K. Serivalsatit, S. Teerasoradech, A. Saelee, Synthesis of magnesium aluminate spinel nanoparticles by co-precipitation method : the influences of precipitants, Suranaree J. Sci. Technol. 19 (2012) 265-270.

DOI: 10.4028/www.scientific.net/kem.659.310

Google Scholar

[16] A. Wajler, H. Tomaszewski, E. Drozdz-Ciesla, H. Weglarz, Z. Kaszkur, Study of magnesium aluminate spinel formation from carbonate precursors, J. Eur. Ceram. Soc. 28 (2008) 2495-2500.

DOI: 10.1016/j.jeurceramsoc.2008.03.013

Google Scholar

[17] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Y. Yajima, A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder, Ceram. Int. 27 (2001) 481-489.

DOI: 10.1016/s0272-8842(00)00107-3

Google Scholar

[18] R. Wang, X. Liang, Y. Peng, X. w. Fan, J. x. Li, Effect of the reaction temperature on nanocrystallites MgAl2O4 spinel ceramic precursor, J. Ceram. Process Res., (2009) 780-782.

Google Scholar

[19] R. c. Zeng, Z. g. Liu, F. Zhang, S. q. Li, Q. k. He, H. z. Cui, E. h. Han, Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Trans. Nonferrous Met. Soc. China 25 (2015) 1917-(1925).

DOI: 10.1016/s1003-6326(15)63799-2

Google Scholar

[20] J. Canterford, G. Tsambourakis, B. Lambert, Some observations on the properties of dypingite, Mg5(CO3) OH)2· 5H2O, and related minerals, Mineral. Mag. 48 (1984) 437-442.

DOI: 10.1180/minmag.1984.048.348.15

Google Scholar

[21] G.C. Li, Y.Q. Liu, L.L. Guan, X.F. Hu, C.G. Liu, Meso/macroporous γ-Al2O3 fabricated by thermal decomposition of nanorods ammonium aluminium carbonate hydroxide, Mater. Res. Bull. 47 (2012) 1073-1079.

DOI: 10.1016/j.materresbull.2011.12.026

Google Scholar

[22] J.T. Kloprogge, L. Hickey, R.L. Frost, FT‐Raman and FT‐IR spectroscopic study of synthetic Mg/Zn/Al‐hydrotalcites, J. raman spectrosc. 35 (2004) 967-974.

DOI: 10.1002/jrs.1244

Google Scholar

[23] C.J. Zollner, T.I. Willett-Gies, S. Zollner, S. Choi, Infrared to vacuum-ultraviolet ellipsometry studies of spinel (MgAl2O4), Thin Solid Films 571, Part 3 (2014) 689-694.

DOI: 10.1016/j.tsf.2013.11.141

Google Scholar

[24] C.A. Contreras, E. Ramos, S. Sugita, J. Serrato, Aluminum carbonate as an alumina precursor, in: N.P. Bansal and J.P. Singh (Eds. ), Innovative Processing and Synthesis of Ceramics, Glasses, and Composites VI, John Wiley & Sons, Inc., New Jersey, 2006, pp.165-176.

DOI: 10.1002/9781118380826.ch15

Google Scholar

[25] K. Maca, M. Trunec, R. Chmelik, Processing and properties of fine-grained transparent MgAl2O4 ceramics, Ceram. -Silik 51 (2007) 94-97.

Google Scholar