Thermal and Mechanical Behaviors of Cementitious Composites Reinforced with Bagasse

Article Preview

Abstract:

Worldwide, the purpose of enhancing sustainability, circular economy, use of by-products and renewable resources, has an increasing interest. Adding value to vegetable tropical resources is one of the challenges of COVACHIM-M2E laboratory. In this paper, sugar cane bagasse is evaluated both as mineral replacement and as reinforcement in cementitious matrices. In the modified matrix, cement is partly replaced by natural pozzolan and bagasse ashes, thus a ternary matrix is obtained. Composites materials are then elaborated by incorporation of bagasse fibers in this modified matrix (2 to 6 weight percent).The thermal conductivity and bending strength of the composites placed in a climatic chamber (25°C, 50% of relative humidity) are evaluated and compared to composites made with commercial cement and bagasse fibers, exposed to identical aging conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-340

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] G. Fajardo, P. Valdez, J. Pacheco, Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides, Construction and Building Materials 23 (2) (2009), 768-774.

DOI: 10.1016/j.conbuildmat.2008.02.023

Google Scholar

[2] R.E. Núñez-Jaquez, J.E. Buelna-Rodríguez, C.P. Barrios-Durstewitz, C. Gaona-Tiburcio, F. Almeraya-Calderón, Corrosion of modified concrete with sugar cane bagasse ash, International Journal of Corrosion, vol. 2012, Article ID 451864, 5 pages, (2012).

DOI: 10.1155/2012/451864

Google Scholar

[3] K. Ganesan, K. Rajagopal, K. Thangavel, Evaluation of bagasse ash as supplementary cementitious material, Cement and Concrete Composites 29 (6) (2007), 515-524.

DOI: 10.1016/j.cemconcomp.2007.03.001

Google Scholar

[4] V.M. Malhotra, P.K. Mehta, Pozzolanic and cementitious materials. Advances in concrete technology 1, Taylor and Francis, London, (1996).

Google Scholar

[5] RTAA DOM. http: /www. rt-batiment. fr/fileadmin/documents/RTAA_DOM/rtaa_dom_protection_solaire_dec2012. pdf.

Google Scholar

[6] J. Khedari, B. Suttisonk, N. Pratinthong, J. Hirunlabh, New lightweight composite construction materials with low thermal conductivity, Cement and concrete composites 23(1) (2001), 65-70.

DOI: 10.1016/s0958-9465(00)00072-x

Google Scholar

[7] K. Bilba, A. Ouensanga, Fourier transform infrared spectroscopic study of thermal degradation of sugarcane bagasse, Journal of Analytical and Applied Pyrolysis 38 (1996), 61-73.

DOI: 10.1016/s0165-2370(96)00952-7

Google Scholar

[8] Jr.H. Savastano, P.G. Warden, R.S.P. Coutts, Brazilian waste fibres as reinforcement for cement-based composites, Cement and Concrete Composites 22 (2000), 379-384.

DOI: 10.1016/s0958-9465(00)00034-2

Google Scholar

[9] Norme NF EN 197-1: Méthodes d'essais des ciments - Partie 1 : détermination des résistances mécaniques, Normalisation Française des Ciments, (2001).

Google Scholar

[10] NF EN 993-15 norm: Méthodes d'essai pour produits réfractaires façonnés denses - Partie 15 : détermination de la conductivité thermique par la méthode du fil chaud (parallèle), Normalisation Française des Ciments, (2005).

Google Scholar

[11] M.E. Suliman, S.M.F. Almola, The use of sugarcane bagasse ash as an alternative local pozzolanic material: study of chemical composition, Science Vision 16-17 (2010-2011).

Google Scholar

[12] G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares E.M. R Fairbairn, Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars, Cement and Concrete Composites 30 (5) (2008), 410-418.

DOI: 10.1016/j.cemconcomp.2008.01.001

Google Scholar

[13] K.W. Day, J. Aldred, B. Hudson, Concrete Mix Design, Quality Control and Specification, Fourth Edition, CRC Press, Boca Raton, (2013).

Google Scholar

[14] ASTM norm C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, (2008).

DOI: 10.1520/c0618-15

Google Scholar

[15] G.C. Cordeiro, R.D. Toledo Filho, Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash, Construction and Building Materials 23 (10) (2009), 3301-3303.

DOI: 10.1016/j.conbuildmat.2009.02.013

Google Scholar

[16] Y. Senhadji, G. Escadeillas, G. Mouli, H. Khelafi, Benosman . Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder technology 254 (2014), 314-323.

DOI: 10.1016/j.powtec.2014.01.046

Google Scholar

[17] M. Mouli, H. Khelafi, Performance characteristics of lightweight aggregate concrete containing natural pozzolan, Building and Environment 43 (1) (2008), 31-36.

DOI: 10.1016/j.buildenv.2006.11.038

Google Scholar

[18] M.J. Shannag, High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites 22 (2000) 399-406.

DOI: 10.1016/s0958-9465(00)00037-8

Google Scholar

[19] N. Chusilp, C. Jaturapitakkul, K. Kiattikomol, Effects of LOI ground bagasse ash on the compressive strength and sulfate resistance of mortars, Construction and Building Materials 23 (2009), 3523-3531.

DOI: 10.1016/j.conbuildmat.2009.06.046

Google Scholar

[20] H. Hamdan, M.N. Mohd Muhid, S. Endud, E. Listiorini Z. Ramli, Studies of rice husk silica for the synthesis of zeolites, Journal of Non Crystalline Solids 211 (1997), 126-131.

DOI: 10.1016/s0022-3093(96)00611-4

Google Scholar

[21] V.P. Della, I. Kuhn, D. Hotza, Rice husk ash an alternate source for active silica production, Materials Letters 57 (4) (2002), 818-821.

DOI: 10.1016/s0167-577x(02)00879-0

Google Scholar

[22] C. Zhang, W. Aiqin, T. Mingshu, L. Xiaoyu, The filling role of pozzolanic material, Cement and Concrete Research 26 (6) (1996), 943-947.

DOI: 10.1016/0008-8846(96)00064-6

Google Scholar

[23] Y. Xu, D.D.L. Chung, Cement of high specific heat and high thermal conductivity, obtained by using silane and silica fume as admixtures, Cement and concrete research 30 (2000), 1175-1178.

DOI: 10.1016/s0008-8846(00)00296-9

Google Scholar

[24] S. Bejaoui, B. Bary, Modeling of link between microstructure and effective diffusivity of cement pastes using a simplified composite model, Cement and Concrete Research 37 (2007), 469-480.

DOI: 10.1016/j.cemconres.2006.06.004

Google Scholar

[25] MA. Arsène, A. Okwo, K. Bilba, A.B. SoboyejoW.O. Soboyejo, Chemically ant thermally treated vegetable fibers for reinforcement of cement-based composite, Materials and Manufacturing Processes 22(2) (2007), 214-227.

DOI: 10.1080/10426910601063386

Google Scholar