Application of Selected Multiaxial High-Cycle Fatigue Criteria to Rolling Contact Problems

Article Preview

Abstract:

The risk of fatigue failure of elements working in rolling contact conditions (such as railway wheels, rolling bearings, etc.) is a significant issue with respect to safety and economy. In this case the complex and non-proportional stress state with pulsating three dimensional compression occurs. Therefore, the analysis of fatigue life of structures working in rolling contact conditions can be performed using recently proposed multiaxial high-cycle fatigue criteria. However, there is no hypothesis that could be universally accepted for calculations of fatigue strength. Furthermore, not all criteria proposed in literature for rolling contact fatigue (RCF) analysis can predict it. In the paper, the most popular criteria based on different theories are investigated in the application to RCF problem. Moreover, modification of the popular Dang Van hypothesis is proposed. The problem of free and tractive rolling contact fatigue is analysed on the example of a cylindrical crane wheel and spherical thrust roller bearing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-170

Citation:

Online since:

February 2013

Export:

Price:

[1] Ciavarella M., Monno F., Demelio G., On the Dang Van fatigue limit in rolling contact fatigue, International Journal of Fatigue 28 (2006) 852–863.

DOI: 10.1016/j.ijfatigue.2005.11.002

Google Scholar

[2] Bernasconi A., Filippini M., Foletti S., Vaudo D., Multiaxial fatigue of a railway steel under non-proportional loading, International Journal of Fatigue 28 (2006) 663–672.

DOI: 10.1016/j.ijfatigue.2005.07.045

Google Scholar

[3] Ekberg A., Kabo E., Fatigue of railway wheels and rails under rolling contact and thermal loading – an overview, Wear 258 (2005) 1288–1300.

DOI: 10.1016/j.wear.2004.03.039

Google Scholar

[4] Romanowicz P., Fatigue analysis of selected machine elements working at rolling contact condition, PhD Thesis, Cracow University of Technology, Cracow (2010).

Google Scholar

[5] Desimone H., Bernasconi A., Beretta S., On the application of Dang Van criterion to rolling contact fatigue, Wear 260 (2006) 567–572.

DOI: 10.1016/j.wear.2005.03.007

Google Scholar

[6] Ekberg A., Rolling contact fatigue of railway wheels – a parametric study, Wear 211 (1997) 280-288.

DOI: 10.1016/s0043-1648(97)00106-3

Google Scholar

[7] Dang Van K., Maitournam M. H., On some recent trends in modelling of contact fatigue and wear in rail, Wear 253 (2002) 219–227.

DOI: 10.1016/s0043-1648(02)00104-7

Google Scholar

[8] Liu Y., Stratman B., Mahadevan S., Fatigue crack initiation life prediction of railroad wheels, International Journal of Fatigue 28 (2006) 747–756.

DOI: 10.1016/j.ijfatigue.2005.09.007

Google Scholar

[9] Papadopoulos I.V., Long life fatigue under multiaxial loading, International Journal of Fatigue 23 (2001) 839–849.

DOI: 10.1016/s0142-1123(01)00059-7

Google Scholar

[10] Sines G., Behaviour of metals under complex static and alternating stresses, in: Metal Fatigue, McGraw Hill, New York, 1959, 145-169.

Google Scholar

[11] Crossland B., Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, Proc. Int. Conf. Fatigue of Metals, London, 1956, p.138–49.

Google Scholar

[12] Łagoda T., Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration, International Journal of Fatigue 23 (2001) 467–480.

DOI: 10.1016/s0142-1123(01)00016-0

Google Scholar

[13] Weber B., Fatigue multiaxiale des structures industrielles sous chargement quelconque [En ligne] Thèse : Institut National des Sciences Appliquées de Lyon, (1999).

Google Scholar

[14] Muc A., Kędziora P., A fuzzy set analysis for a fracture and fatigue damage response of composite materials, Compos. Str. 54 (2001) 283-287.

DOI: 10.1016/s0263-8223(01)00099-x

Google Scholar

[15] Papadopoulos I.V., Davoli P., Gorla C., Filippini M., Bernasconi A., A comparative study of multiaxial high-cycle fatigue criteria for metals, International Journal of Fatigue vol. 19 no. 3 (1997) 219-235.

DOI: 10.1016/s0142-1123(96)00064-3

Google Scholar

[16] Bong-Ryul You, Sonn-Bok Lee, A critical review on multiaxial fatigue assessments of metals, International Journal of Fatigue, vol. 18 № 4 (1996) 235-244.

DOI: 10.1016/0142-1123(96)00002-3

Google Scholar

[17] Kluger K., Łagoda T., Wpływ wartości średniej obciążenia na trwałość zmęczeniową w opisie energetycznym. Wieloosiowe zmęczenie losowe elementów maszyn i konstrukcji - część XI, Politechnika Opolska, Opole, (2007).

DOI: 10.5604/17318157.1143828

Google Scholar

[18] Liu Y., Mahadevan S., Multiaxial high-cycle fatigue criterion and life prediction for metals, International Journal of Fatigue 27 (2005) 790–800.

DOI: 10.1016/j.ijfatigue.2005.01.003

Google Scholar

[19] Information on http: /www. demagcranes. pl.

Google Scholar

[20] Esderts A., Betriesfestigkeit bei mehrachsiger Biege- und Torsionbeanspruchung, Technische Universitat Clausthal, (1995).

Google Scholar

[21] SKF, Bearing failures and their causes, 1994, information on http: /www. skf. com.

Google Scholar

[22] Sadeghi F., Jalalahmadi B., Slack T. S., Raje N., Arakere N. K., A Review of Rolling Contact Fatigue, Journal of Tribology 131 (2009) 041403 1-15.

DOI: 10.1115/1.3209132

Google Scholar

[23] Information on http: /www. skf. com.

Google Scholar

[24] Information on http: /www. interlloy. com. au/data_sheets/stainless_steel/440c. html.

Google Scholar

[25] Romanowicz P., High-cycle fatigue analysis of spherical roller bearing: submitted to Przegląd Mechaniczny (2012).

Google Scholar

[26] Papuga J., A survey on evaluating the fatigue limit under multiaxial loading, International Journal of Fatigue 33 (2011) 153–165.

DOI: 10.1016/j.ijfatigue.2010.08.001

Google Scholar