Graphite Morphology Evolution during Melt Holding of Ductile Iron

Article Preview

Abstract:

Evolution processes of graphite morphology in ductile iron were investigated by quenching specimens during a long time holding of iron melt in a Ar atmosphere. Results show that spheroidal graphite is only observed at the early stage of melt holding. There are no evident changes in morphology of spheroidal graphite with increasing holding time up to 180 min. Subsequently chunky graphite precipitates directly after holding for 240 min as spheroidizing ability (Mg residual and RE residual) is insufficient. The number and size of eutectic chunky graphite cells increase with prolonged holding time. It should be noted that vermicular graphite forms around eutectic chunky graphite cells after holding for 360 min. When holding time reaches 420 min, graphite morphology is flake-like together with some chunky graphite. The graphite morphology in ductile iron changes from spherical to chunky, then chunky to vermicular, finally to flake with an increase in melt holding time. Both spheroidizing ability and numbers of effective nucleus decrease with prolonged holding time of melt, which affect graphite morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

December 2010

Export:

Price:

[1] K. F. Nilsson, V. Vokal: Mater. Sci. Eng., A, Vol. 502 (2009), p.54.

Google Scholar

[2] C. H. Hsu, S. C. Lee, Y. H. Shy, W. T. Chiou: Mater. Sci. Eng., A, Vol. 282 (2000), p.115.

Google Scholar

[3] S. Jung, T. Ishikawa, S. Sekizuka, H. Nakae: J. Mater. Sci., Vol. 40 (2005), p.2227.

Google Scholar

[4] M. Tsujikawa, K. Nagamine, A. Ikenaga, M. Hino: Int. J. Cast Met. Res., Vol. 21 (2008), p.76.

Google Scholar

[5] H. W. Hoover: AFS Trans., Vol. 94 (1986), p.601.

Google Scholar

[6] I. Asenjo, P. Larranaga, J. Sertucha, R. Suarez, J. M. Gomez, I. Ferrer, J. Lacaze: Int. J. Cast Met. Res., Vol. 20 (2007), p.319.

Google Scholar

[7] C. Labrecque, M. Gagné: Can. Metall. Quart., Vol. 37 (1998), p.343.

Google Scholar

[8] Z. Zhang, H. M. Flower, Y. Niu: Mater. Sci. Technol., Vol. 5 (1989), p.657.

Google Scholar

[9] H. Itofuji, H. Uchikawa: AFS Trans., Vol. 98 (1990), p.429.

Google Scholar

[10] P. Larranaga, I. Asenjo, J. Sertucha, R. Suarez, I. Ferrer, J. Lacaze: Metall. Mater. Trans. A, Vol. 40A (2009), p.654.

Google Scholar

[11] P. K. Basutkar, C. R. Loper, C. L. Babu: AFS Trans., Vol. 78 (1970), p.429.

Google Scholar

[12] F. Keming, W. Min, Y. Zongsen: Giesserei, Vol. 82 (1995), p.597.

Google Scholar

[13] S. Kiguchi, T. Ishikawa, H. Sumimoto, K. Nakamura: J. JFS, Vol. 73 (2001), p.173.

Google Scholar

[14] S. Kiguchi, M. Shintani, H. Sumimoto, K. Nakamura: J. JFS, Vol. 72 (2000), p.311.

Google Scholar

[15] R. Källbom, K. Hamberg, L. E. Björkegren (2005) in Samuelsson J, Marquis G, Solin J (eds)Seminar on Competent Design by Castings (GJUTDESIGN -2005), Espoo, Finland.

Google Scholar

[16] R. Källbom, K. Hamberg, M. Wessén, L. E. Björkegren: Mater. Sci. Eng., A, Vol. 413-414 (2005), p.346.

Google Scholar

[17] F. Keming, W. Dongzhi, X. Yan: Giesserei, Vol. 84 (1997), p.22.

Google Scholar

[18] A. Javaid, C. R. Loper: AFS Trans., Vol. 103 (1995), p.135.

Google Scholar

[19] Z. Ignaszak: Mater. Sci., Vol. 9 (2003), p.245.

Google Scholar

[20] M. Bazdar, H. R. Abbasi, A. H. Yaghtin, J. Rassizadehghani: J. Mater. Process. Technol., Vol. 209 (2009), p.1701.

Google Scholar

[21] S. Jung, T. Ishikawa, H. Nakae: Mater. Sci. Eng., A, Vol. 476 (2008), p.350.

Google Scholar

[22] T. Skaland, Ø. Grong, T. Grong: Metall. Mater. Trans. A, Vol. 24 (1993), p.2321.

DOI: 10.1007/bf02648605

Google Scholar

[23] H. Itofuji, Y. Kawano, N. Inoyama: AFS Trans., Vol. 91 (1983), p.831.

Google Scholar

[24] S. V. Subramanian, D. R. Kay, G. R. Purdy: AFS Trans., Vol. (1982), p.589.

Google Scholar