Efficiency of Electron Injection in Dye-Sensitized Semiconductor Films

Article Preview

Abstract:

The efficiency of electron injection (inj) in dye-sensitized nanocrystalline films has been studied by means of transient absorption spectroscopy. We observed inj of nearly unity for N3 dye adsorbed on nanocrystalline TiO2 films (N3/TiO2). We examined the effects of various experimental conditions, such as light intensity, excitation wavelength, and presence of additives (4-tert- butylpyridine, tBP and Li ions), on inj. We also used various semiconductors and sensitizer dyes to study the effect of free energy change (G) on inj. These results give us new insights for developing high-performance solar cell devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-95

Citation:

Online since:

November 2010

Export:

Price:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel: J. Am. Chem. Soc. Vol. 127 (2005), p.16835.

DOI: 10.1021/ja052467l

Google Scholar

[3] J. B. Asbury, E. Hao, Y. Q. Wang, H. N. Ghosh and T. Q. Lian: J. Phys. Chem. B Vol. 105 (2001), p.4545.

Google Scholar

[4] C. A. Kelly and G. J. Meyer: Coord. Chem. Rev. Vol. 211 (2001), p.295.

Google Scholar

[5] G. Benkö, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundström: J. Am. Chem. Soc. Vol. 124 (2002), p.489.

DOI: 10.1021/ja016561n

Google Scholar

[6] R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa and M. Tachiya: Coord. Chem. Rev. Vol. 248 (2004), p.1195.

Google Scholar

[7] J. R. Durrant, S. A. Haque and E. Palomares: Chem. Commun (2006), p.3279.

Google Scholar

[8] R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide and L. Han: Chem. Phys. Lett. Vol. 471 (2009), p.280.

Google Scholar

[9] T. Yoshihara, M. Murai, Y. Tamaki, A. Furube and R. Katoh: Chem. Phys. Lett. Vol. 394 (2004), p.161.

Google Scholar

[10] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 108 (2004), p.4818.

Google Scholar

[11] S. Das and P. V. Kamat: J. Phys. Chem. B Vol. 102 (1998), p.8954.

Google Scholar

[12] T. Yoshihara, R. Katoh, A. Furube, M. Murai, Y. Tamaki, K. Hara, S. Murata, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 108 (2004), p.2643.

DOI: 10.1021/jp031118f

Google Scholar

[13] R. Katoh, A. Furube, S. Mori, M. Miyashita, K. Sunahara, N. Koumura and K. Hara: Energy and Environmental Science Vol. 2 (2009), p.542.

DOI: 10.1039/b900372j

Google Scholar

[14] R. Katoh, A. Furube, M. Kasuya, N. Fuke, N. Koide and L. Han: Sol. Energy Mater. Sol. Cell Vol. 93 (2009), p.698.

Google Scholar

[15] R. Katoh, A. Huijser, K. Hara, T. J. Savenije and L. D.A. Siebbeles: J. Phys. Chem. C Vol. 111 (2007), p.10741.

Google Scholar

[16] Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R. Durrant: J. Phys. Chem. Vol. 100 (1996), p.20056.

Google Scholar

[17] J. R. Durrant, Y. Tachibana, I. Mercer, J. E. Moser, M. Grätzel and D. R. Klug: Z. Phys. Chem. Vol. 212 (1999), p.93.

Google Scholar

[18] J. B. Asbury, N. A. Anderson, E. Hao, X. Ai and T. Lian: J. Phys. Chem. B Vol. 107 (2003), p.7376.

Google Scholar

[19] J. E. Moser, M. Wolf, F. Lenzmann and M. Grätzel: Z. Phys. Chem. Vol. 212 (1999), p.85.

Google Scholar

[20] R. Katoh, A. Furube, M. Murai, Y. Tamaki, K. Hara and M. Tachiya: C. R. Chimie Vol. 9 (2006), p.639.

Google Scholar

[21] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 106 (2002), p.12957.

Google Scholar

[22] K. Kalyanasundaram and M. Grätzel: Coord. Chem. Rev. Vol. 77 (1998), p.347.

Google Scholar

[23] S. Iwai, K. Hara, S. Murata, R. Katoh, H. Sugihara and H. Arakawa: J. Chem. Phys. Vol. 113 (2000), p.3366.

Google Scholar

[24] G. Benkö, P. Myllyperkiö, J. Pan, A. P. Yartsev and V. Sundström: J. Am. Chem. Soc. Vol. 105 (2002) p.1118.

Google Scholar

[25] A. Furube, R. Katoh, K. Hara, S. Murata, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 107 (2003), p.4162.

Google Scholar

[26] A. C. Bhasikuttan and T. Okada: J. Phys. Chem. B Vol. 108 (2004), p.12629.

Google Scholar

[27] K. Hashimoto, M. Hiramoto, A. B. P. Lever and T. Sakata: J. Phys. Chem. Vol. 92 (1988), p.1016.

Google Scholar

[28] T. Sakata, K. Hashimoto and M. Hiramoto: J. Phys. Chem. Vol. 94 (1990), p.3040.

Google Scholar

[29] A. Furube, M. Murai, S. Watanabe, K. Hara, R. Katoh and M. Tachiya: J. Photochem. Photobiol. A Chem. Vol. 182 (2006), p.273.

Google Scholar

[30] Y. Tachibana, I. V. Rubtsov, I. Montanari, K. Yoshihara, D. R. Klug and J. R. Durrant: J. Photochem. Photobio. A Chem. Vol. 142 (2001), p.215.

Google Scholar

[31] M. Tachiya: Radiat. Phys. Chem. Vol. 17 (1981), p.447.

Google Scholar

[32] S. Murata, S. Y. Matsuzaki and M. Tachiya: J. Phys. Chem. Vol. 99 (1995), p.5354.

Google Scholar

[33] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa: J. Phys. Chem. B Vol. 107 (2003), p.597.

DOI: 10.1021/jp026963x

Google Scholar

[34] Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R. Durrant: J. Phys. Chem. Vol. 100 (1996), p.20056.

Google Scholar

[35] T. Tani, T. Suzumoto and K. Ohzeki: J. Phys. Chem. Vol. 94 (1990), p.1298.

Google Scholar

[36] K. Sayama, H. Sugihara and H. Arakawa: Chem. Mater. Vol. 10 (1998), p.3825.

Google Scholar

[37] K. Keis, J. Lindgren, S. -E. Lindquist and A. Hagfeldt: Langmuir, Vol. 16 (2000), p.4688.

Google Scholar

[38] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 107 (2003), p.2570.

Google Scholar

[39] R. Katoh, A. Furube, M. Kasuya, N. Fuke, N. Koide and L. Han: J. Mater. Chem. Vol. 17 (2007), p.3190.

DOI: 10.1039/b702805a

Google Scholar

[40] S. A. Haque; E. Palomares, B. M. Cho, A. N. M. Green; N. Hirata, D. R. Klug and J. R. Durrant: J. Am. Chem. Soc. Vol 127 (2005), p.3456.

Google Scholar

[41] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida: J. Phys. Chem. B Vol. 109 (2005), p.3480.

Google Scholar

[42] C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala and G. J. Meyer: Langmuir Vol. 15 (1999), p.7047.

Google Scholar

[43] A. Furube, R. Katoh, K. Hara, T. Sato, S. Murata, H. Arakawa and M. Tachiya: J. Phys. Chem. B Vol. 109 (2005), p.16406.

Google Scholar

[44] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide: J. Phys. Chem. C Vol. 113, (2009), p.20738.

Google Scholar

[45] Z. -S. Wang, H. Kawauchi, T. Kashima and H. Arakawa: Cood. Chem. Rev. Vol. 248 (2004), p.1381.

Google Scholar

[46] K. Zhu, N. Kopidakis, N. R. Neale, J. van de Lagemaat and A. J. Frank: J. Phys. Chem. B Vol. 110 (2006), p.25174.

Google Scholar

[47] J. E. Kroeze, T. Savenije and J. M. Warman: J. Am. Chem. Soc. Vol. 126 (2004), p.7608.

Google Scholar

[48] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel: J. Am. Chem. Soc. Vol. 118 (1996), p.6716.

Google Scholar