High-Temperature Mechanical Spectrometer for Internal Friction Measurements

Article Preview

Abstract:

A new high temperature mechanical spectrometer, based on an inverted torsion pendulum, has been constructed for the measurement of the internal friction and the dynamic shear elastic modulus in two different working modes: (a) as a function of temperature (300 – 1800 K) at imposed frequency, during heating or cooling; and (b) as a function of frequency (10-3 – 10 Hz) in isothermal conditions. The whole installation is computer controlled by a dedicated software specifically developed. We describe the different parts of this new installation, as well as its performances in both temperature and frequency through an original example study on a high temperature structural intermetallic of Fe-Al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-95

Citation:

Online since:

December 2009

Export:

Price:

[1] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, USA, (1972).

Google Scholar

[2] J. San Juan, in: R. Schaller, G. Fantozzi, G. Gremaud (Eds. ), Mechanical Spectroscopy Q-1 2001, Trans Tech Publications, Uetikon, Switzerland, 2001, pp.32-73.

Google Scholar

[3] G. Fantozzi, in: R. Schaller, G. Fantozzi, G. Gremaud (Eds. ), Mechanical Spectroscopy Q-1 2001, Trans Tech Publications, Uetikon, Switzerland, 2001, pp.3-31.

Google Scholar

[4] R.S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton, USA, (1999).

Google Scholar

[5] R.S. Lakes, Rev. Sci. Instrum. 75 (2004), p.797.

Google Scholar

[6] K.P. Menard, Dynamic Mechanical Analysis, CRC Press, Boca Raton, USA, (1999).

Google Scholar

[7] J. Woirgard, Il Nuovo Cimento 33 (1976), p.424.

Google Scholar

[8] J. Woirgard, Y. Sarrazin, and H. Chaumet, Rev. Sci. Instrum. 48, (1977), p.1322.

Google Scholar

[9] G. D'Anna and W. Benoit, Rev. Sci. Instrum. 61, (1990), p.3821.

Google Scholar

[10] P. Gadaud, B. Guisolan, A. Kulik, and R. Schaller, Rev. Sci. Instrum. 61, (1990), p.2671.

Google Scholar

[11] D. Mari, S. Bolognini, G. Feusier, T. Viatte, W. Benoit, Int. J. Refr. Metals Hard Mater. 17 (1999), p.209.

DOI: 10.1016/s0263-4368(98)00078-x

Google Scholar

[12] I. Gutierrez-Urrutia, M.L. No, E. Carreño-Morelli, B. Guisolan, R. Schaller, J. San Juan, Mater. Sci. Eng. A 370 (2004), p.435.

DOI: 10.1016/j.msea.2003.07.023

Google Scholar

[13] P. Simas, University of the Basque Country, Master Thesis, Bilbao, Spain, (2007).

Google Scholar

[14] A. Rivière, J. of Alloys and Compounds. 355, (2003), p.201.

Google Scholar

[15] E. J. Graesser, C. R. Wong, in: V. K. Kinra, A. Wolfenden (Eds), M3D: Mechanics and Mechanisms of Material Damping, ASTM STP 1169, Philadelphia, PA, USA, 1992, pp.316-343.

DOI: 10.1520/stp1304-eb

Google Scholar

[16] J. San Juan, M.L. Nó, J. Lacaze, G. Viguier, D. Fournier, Mater. Sci. Eng. A, 442, (2006), p.492.

Google Scholar

[17] P. Simas, J. San Juan, M.L. No, Mater. Sci. Eng. A (2009), doi: 10. 1016/j. msea. 2008. 10. 063 (in-Press).

Google Scholar