On the Time-Dependent Behavior of FGM Plates

Article Preview

Abstract:

A non-classical plate theory based on the direct approach is introduced and applied to plates composed of functionally graded materials (FGM). The governing two-dimensional equations are formulated for a deformable surface, the viscoelastic stiffness parameters are identified assuming linear-viscoelastic material behavior. In addition, the material properties are changing in the thickness direction. Solving some problems of the global structural analysis it can be shown that in some cases the results based on the presented theory significantly differ from the results based on the Kirchhofftype theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

October 2008

Export:

Price:

[1] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H. N. G. Wadley: Metal Foams: A Design Guid (Butterworth-Heinemann, Boston, 2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[2] J. Banhart, M. F. Ashby and N. A. Fleck, editors: Metal Foams and Porous Metal Structures (Verlag MIT Publishing, Bremen, 1999).

Google Scholar

[3] H. P. Degischer and B. Kriszt, editors: Handbook of Cellular Metals. Production, Processing, Applications (Wiley-VCH, Weinheim, 2002).

DOI: 10.1002/3527600558

Google Scholar

[4] L. J. Gibson and M. F. Ashby: Cellular Solids: Structure and Properties. Cambridge Solid State Science Series (Cambridge University Press, Cambridge, 1997), 2nd edn.

Google Scholar

[5] A. H. Landrock, editor: Handbook of Plastic Foams. Types, Properties, Manufactore and Applications (Noes Publications, Park Ridge, New Jersey, 1995).

Google Scholar

[6] S. Lee and N. Ramesh, editors: Polymeric Foams. Mechanisms and Materials (CRC Press, Boca Raton, 2004).

Google Scholar

[7] N. Mills: Polymer Foams Handbook. Engineering and Biomechanics Applications and Design guide (Butterworth-Heinemann, Amsterdam, 2007).

Google Scholar

[8] R. S. Lakes: Science vol. 235, (1987), p.1038.

Google Scholar

[9] M. T. Shaw: Introduction to Polymer Viscoelasticity (Wiley, Hoboken, New Jersey, 2005), 3rd edn.

Google Scholar

[10] P. Naghdi: In: Handbuch der Physik, edited by S. Fl¨ugge, vol. VIa/2, pp.425-640 (Springer, 1972).

Google Scholar

[11] E. Reissner: Applied Mechanics Review vol. 38, (1985), p.1453.

Google Scholar

[12] P. A. Zhilin: Int. J. Solids Struct. vol. 12, (1976), p.635.

Google Scholar

[13] H. Altenbach and P. Zhilin: Uspekhi Mekhaniki vol. 11, (1988), p.107.

Google Scholar

[14] H. Altenbach: Ingenieur-Archiv vol. 58, (1988), p.215.

Google Scholar

[15] H. Altenbach and P. A. Zhilin: In: Critical review of the theories of plates and shells and new applications, edited by R. Kienzler, H. Altenbach and I. Ott, Lect. Notes Appl. Comp. Mech. 16, pp.1-12 (Springer, Berlin, 2004).

DOI: 10.1007/978-3-540-39905-6

Google Scholar

[16] P. A. Zhilin: Applied mechanics. Foundations of the theory of shells (in Russ. ) (St. Petersburg State Polytechnical University, 2006).

Google Scholar

[17] H. Rothert: Direkte Theorie von Linien- und Fl¨achentragwerken bei viskoelastischen Werkstoffverhalten. Techn. -Wiss. Mitteilungen des Instituts f¨ur Konstruktiven Ingenieurbaus 73-2, Ruhr-Universit¨at, Bochum (1973).

Google Scholar

[18] H. Altenbach: Ingenieur-Archiv vol. 22, (1987), p.135.

Google Scholar

[19] H. Altenbach: Int. J. Solids Struct. vol. 37, (2000), p.3503.

Google Scholar

[20] H. Altenbach: ZAMP vol. 51, (2000), p.629.

Google Scholar

[21] H. Altenbach and V. Eremeyev: Archive of Applied Mechanics vol. DOI: 10. 1007/s00419-007- 0192-3.

Google Scholar

[22] H. F. Brinson and C. L. Brinson: Polymer Engineering Science and Viscoelasticity. An Introduction (Springer, New York, 2008).

Google Scholar

[23] E. Riande and et al., editors: Polymer Viscoelasticity: Stress and Strain in Practice (Marcel Dekker, New York, 2000).

Google Scholar

[24] A. Kraatz: Berechnung des mechanischen Verhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Diss., zentrum f¨ur ingenieurwissenschaften, MartinLuther-Universit¨at, Halle-Wittenberg (2007).

Google Scholar

[25] H. Altenbach and V. Eremeyev: ZAMM vol. 88, (2008), p.332.

Google Scholar

[26] R. M. Christensen: Theory of Viscoelasticity. An Introduction (Academic Press, New York, 1971).

Google Scholar

[27] A. Drozdov: Finite Elasticity and Viscoelasticity (World Scientific, Singapore, 1996).

Google Scholar

[28] P. Haupt: Continuum Mechanics and Theory of Materials (Springer, Berlin, 2002), 2nd edn.

Google Scholar

[29] R. S. Lakes: Cellular Polymers vol. 11, (1992), p.466.

Google Scholar

[30] R. S. Lakes and A. Wineman: J. Elasticity vol. 11, (2006), p.45.

Google Scholar

[31] N. Tschoegl: The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction (Springer, Berlin, 1989).

Google Scholar