Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime

Article Preview

Abstract:

Gigacycle fatigue behavior in high-strength steels tested under rotary bending fatigue was summarized in this paper. Characteristic of the very high cycle fatigue is to be caused the transition of fracture mode from surface-induced fracture to subsurface inclusion-induced one. In the vicinity of an inclusion at the origin of internal crack, granular-bright-facet (GBF) area was formed during extremely long fatigue cycles. It was pointed out that the formation of GBF area was an important factor for the control of the internal fatigue fracture in gigacycle regime. The GBF area revealed a very rough granular morphology compared with the area outside the GBF inside the fish-eye zone, and was related to the carbide distribution in the microstructure of the matrix. From the detailed observation of fracture surface and computer simulation by FRASTA method, the GBF area formation mechanism in a gigacycle fatigue regime was proposed as the ‘dispersive decohesion of spherical carbide model’.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

65-80

Citation:

Online since:

March 2008

Export:

Price:

[1] First international conference was held as Fatigue life in the gigacycle regime", 1998 in Paris. The Second; "Fatigue in the very high cycle regime", 2001 in Vienna, the Third; "Very high cycle fatigue (VHCF-3)", 2004 in Kyoto/Kusatsu, and the Fourth; "Very high cycle fatigue (VHCF-4), 2007 in Ann Arbor, Michigan.

DOI: 10.1016/b978-0-12-813876-2.00015-7

Google Scholar

[2] Q.Y. Wang, Y. Berard, A. Dubarre, G. Baudry, S. Rathery and C. Bathias: Fatigue Fract. Engng. Mater. Struc. Vol. 22-7(1999), pp.667-672.

DOI: 10.1046/j.1460-2695.1999.00185.x

Google Scholar

[3] Y. Murakami, T. Nomoto and T. Ueda: Fatigue Fract Engng Mater Struc. Vol. 22-7(1999), pp.581-590.

Google Scholar

[4] Y. Murakami, T. Nomoto and T. Ueda, Y. Murakami, M. Ohori: J. Soc. Mater. Sci. Jpn Vol. 48 -10(1999), pp.1112-1117.

Google Scholar

[5] Y. Murakami, M. Takada and T. Toriyama: Int. J. Fatigue Vol. 20-9(1998), pp.661-667.

Google Scholar

[6] S. Nishijima and K. Kanazawa: Fatigue Fract. Engng Mater. Struct. Vol. 22-7(1999), pp.601-607.

Google Scholar

[7] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma, in: Fatigue '99 (Proc. 7th Inter. Fatigue Cong) Vol. 1(1999), pp.573-578.

Google Scholar

[8] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma: J. Soc. Mater. Sci. Jpn Vol. 49-7(2000), pp.779-785.

Google Scholar

[9] M. Nakajima, T. Sakai and T. Shimizu: Trans. Jpn Soc. Mech. Eng. Vol. 65A-640(1999), pp.2504-2510.

Google Scholar

[10] T. Sakai, M. Takeda, N. Tanaka, M. Kanemitsu, N. Oguma and K. Shiozawa: Mat. Sci. Res. Int. STP-1, Soc. Mat. Sci. Jpn(2001), pp.41-46.

Google Scholar

[11] H. Emura H and K. Asami: Trans. Jpn Soc. Mech. Eng. Vol. 55A-509(1989), pp.45-50.

Google Scholar

[12] K. Shiozawa, S. Nishino, T. Ohtani and S. Mizuno, in: Small Fatigue Cracks. Mechanics, Mechanisms and Applications, Elsevier Sci. (1999), pp.39-47.

Google Scholar

[13] K. Shiozawa, in: Macro and Microscopic Approach to Fracture, edited by S. -I. Nishida, WIT press (2003), pp.117-170.

Google Scholar

[14] K. Shiozawa and H. Matsushita, in: Fatigue 96, Pergamon Press(1996), pp.301-306.

Google Scholar

[15] K. Shiozawa, Y. Kuroda and S. Nishino, Trans. Jpn Soc. Mech. Eng. Vol. 64A-626(1998), pp.2528-2535.

Google Scholar

[16] L. Ruppen, P. Bhowal, D. Eylon and J. McEvily, in: Fatigue Mechanics, ASTM-STP 675, ASTM (1979), pp.47-68.

Google Scholar

[17] A. Atrens, W. Hoffelner, T. W. Duering and J.E. Allison: Scripta Metallu. Vol. 17-5(1983), pp.601-606.

Google Scholar

[18] S. Adachi, L. Wagner and G. Lutjering, in: Proc. 5th Int. Conf. Ti Sci. Tech. Vol. 4(1985), 2139-2146.

Google Scholar

[19] J. Bian, K. Tokaji, M. Nakajima and T. Ogawa: J. Jpn Soc. Mat. Sci. Jpn Vol. 44-502(1995), pp.933-938.

Google Scholar

[20] K. Shiozawa, L. Lu and S. Ishihara: Fatigue Fract. Engng Mater. Struct. Vol. 24-12(2001), pp.781-790.

Google Scholar

[21] K. Shiozawa and L. Lu: Fatigue Fract. Engng Mater. Struct. Vol. 25-8/9(2002), pp.813-822.

Google Scholar

[22] Y. Ochi, T. Matsumura, K. Masaki and S. Yoshida: Fatigue Fract. Engng Mater. Struct. Vol. 25-8/9(2002), pp.823-830.

Google Scholar

[23] K. Shiozawa, S. Nishino, N. Shibata and Y. Maruyama, in VHCF-3, Soc. Mater. Sci., Jpn (2004), pp.609-616.

Google Scholar

[24] L. Lu, K. Shiozawa and Y. Morii: Trans. Jpn Soc. Mech. Eng. Vol. 69A-679(2003), pp.662-670.

Google Scholar

[25] L. Lu and K. Shiozawa: Trans. Jpn Soc. Mech. Eng. Vol. 69A-684(2003), pp.1195-1202.

Google Scholar

[26] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: J. Soc. Mater. Sci. Jpn Vol. 52-11(2003), pp.1311-1317.

Google Scholar

[27] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: Inter. J. Fatigue Vol. 28-11(2006), pp.1521-1532.

Google Scholar

[28] K. Shiozawa, Y. Morii and S. Nishino: Trans. Jpn Soc. Mech. Eng. Vol. 70A-691(2004), pp.495-503.

Google Scholar

[29] K. Shiozawa, Y. Morii and S. Nishino: JSME Inter. J. Series A Vol. 49-1(2006), pp.1-10.

Google Scholar

[30] Y. Murakamu and M. Endo: Inter. J. Fatigue Vol. 16-2(1994), pp.163-182.

Google Scholar

[31] L. Lu and K. Shiozawa, in VHCF-3, Soc. Mater. Sci., Jpn (2004), pp.185-192.

Google Scholar

[32] T. Kobayashi and D.A. Shockey: Ad. Mater. & Processes Vol. 140-5(1991), pp.28-34.

Google Scholar

[33] Y. Murakami, N.N. Yokoyama and K. Takai: J. Soc. Mat. Sci. Jpn Vol. 50-10(2001), pp.1068-1073.

Google Scholar