Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators

Article Preview

Abstract:

This paper deals with the fatigue behaviour of NiTiCu shape memory alloy (SMA) wire actuators on thermo-mechanical cycling (TMC). Cyclic loading in SMA actuators is invariably associated with both functional and structural fatigue. The characteristic of the actuators such as austenite (hot shape) remnant deformation and recovery strain undergo changes upon TMC. These in turn result in continuous change in strain response (functional fatigue) during application. It has been shown that the functional fatigue can be minimized by adopting TMC at higher stress than that of the working stress prior to the application. On the other hand, failure of the actuators by fracture (structural fatigue) due to cyclic stress/strain is inevitable. Study shows that the fatigue life of the actuators is strongly dependent on the type of loading and the temperature range of operation. This has been explained in terms of damage accumulation, crack initiation and fracture behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

301-316

Citation:

Online since:

March 2008

Export:

Price:

[1] T.W. Duerig, A. Pelton and D. Stockel: Mater. Sci. Eng. Vol. A273-275 (1999), p.149.

Google Scholar

[2] A.R. Pelton, S. M. Russell, J. DiCello: JOM Vol. 55 (2003), p.33.

Google Scholar

[3] J.V. Humbeeck: Mater. Sci. Eng. Vol. A273-275 (1999), p.134.

Google Scholar

[4] S.K. Wu and H.C. Lin: Mater. Chem. Phy. Vol. 64 (2000), p.81.

Google Scholar

[5] J.V. Humbeeck: Mat. Res. Soc. Symp. Proc. Vol. 246 (1992), p.377.

Google Scholar

[6] J.V. Humbeeck: J. Phys. IV. Vol. 1 (1991), p. C4-189.

Google Scholar

[7] G. Eggeler, E. Hornbogen, Y. Yawny, A. Heckmann, M. Wagner: Mater. Sci. Eng. A Vol. 378 (2004), p.24.

Google Scholar

[8] J. Perkins and R.O. Sponholz: Metall. Trans. A. Vol. 15A (1984), p.313.

Google Scholar

[9] J.L. McNichols, Jr., P.C. Brooks, J.S. Cory: J. Appl. Phys. Vol. 52 (1981), p.7442.

Google Scholar

[10] D.C. Lagoudas, C. Li, D.A. Miller, L. Rong: Proc. of SPIE. Vol. 3992 (2000), p.420.

Google Scholar

[11] O.W. Bertacchini, D.C. Lagoudas, E. Patoor, in: Smart structure and Materials 2003: Active Materials: Behavior and Mechanics, edited by D.C. Lagoudas in Conf. Proc. of SPIE, Vol. 5053 (2003), p.612.

DOI: 10.1117/12.508207

Google Scholar

[12] Y. Liu, J. Laeng, T.V. Chin, T.H. Nam: Mater. Sci. Eng. A Vol. 435-436 (2006), p.251.

Google Scholar

[13] K.N. Melton, O. Mercier: Acta. Met. Mater. Sci. Eng. Vol. 27 (1979), p.137.

Google Scholar

[14] R.M. Tabanli, N.K. Simha, B.T. Berg: Mater. Sci. Eng. A Vol. A273-275 (1999), p.644.

Google Scholar

[15] S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Y. Liu: Mater. Sci. Eng. A Vol. 273-275 (1999), p.658.

Google Scholar

[16] H. Tobushi, T. Hachisuka, S. Yamada, P. Lin: Mech. Mater. Vol. 26 (1997), p.35.

Google Scholar

[17] R. Matsui, H. Tobushi, F. Furuichi, H. Horikawa: Trans. AMIE. Vol. 126 (2004), p.384.

Google Scholar

[18] Y. Kishi, Z. Yazima, K. Shimizu, K. Morii: Mater. Sci. Eng. A Vol. 273-275 (1999), p.654.

Google Scholar

[19] K. Gall, H.J. Maier: Acta mater. Vol. 50 (2002), p.4643.

Google Scholar

[20] E. Hornbogen, A. Heckmann: Mat. -wiss. U. Werkstofftech. Vol. 34 (2003), p.464.

Google Scholar

[21] S. Miyazaki, in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.394.

Google Scholar

[22] Y. Suzuki, H. Tamura, in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.256.

Google Scholar

[23] K.A. Tsoi, J. Schrooten, R. Stalmans: Mater. Sci. Eng. A Vol. 368 (2004), p.286.

Google Scholar

[24] D.A. Miller, D.C. Lagoudas: Smart Mater. Struct. Vol. 9 (2000), p.640.

Google Scholar

[25] Y. Liu, Z. Xie, J.V. Humbeeck, L. Delaey, Scripta Mater. Vol. 41 (1999), p.1273.

Google Scholar

[26] X. Jiang, M. Hida, Y. Takemoto, A. Sakakibara, H. Yasuda, H. Mori, Mater. Sci. Eng., Vol. A238 (1997), p.303.

Google Scholar

[27] M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, G. Eggeler: Mater. Sci. Eng. A Vol. 378 (2004), p.105.

Google Scholar

[28] C.N. Saikrishna, K. Venkata Ramaiah, S.K. Bhaumik: Mater. Sci. Eng. A Vol. 428 (2006), p.217.

Google Scholar

[29] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu: Mater. Trans. JIM. Vol. 31 (1990), p.262.

Google Scholar

[30] R. Stalmans, J.V. Humbeeck, L. Delaey: J. Phys. IV Vol. 1 (1991), p. C4-403.

Google Scholar

[31] L. Rong, D.A. Miller, D.C. Lagoudas: Metall. Mater. Trans. A Vol. 32A (2001), p.2689.

Google Scholar

[32] Y. Liu, Z. Xie, J.V. Humbeeck: Mater. Sci. Eng. Vol. A273-275 (1999), p.673.

Google Scholar

[33] T.H. Nam, T. Saburi, K. Shimizu: Mater. Trans. JIM. Vol. 33 (1991), p.814.

Google Scholar

[34] R. Stalmans, J.V. Humbeeck, L. Delaey, Acta Metall. Mater. Vol. 40 (1992), p.501.

Google Scholar

[35] J. Perkins, G.R. Edwards, C.R. Such, J.M. Johnson and R.R. Allen in: Shape memory effects in alloys edited by J. Perkin, Plenum press, New York (1975), p.273.

Google Scholar

[36] J.V. Humbeeck, R. Stalmans, M. Chandrasekaran, L Delaey in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.96.

DOI: 10.1016/b978-0-7506-1009-4.50012-3

Google Scholar

[37] Y. Zheng, J. Schrooten, L. Cui, J.V. Humbeeck: Acta Mater. Vol. 51 (2003), p.5467.

Google Scholar

[38] K. Wada, Y. Liu: J. Alloy Compd. (2007), in press.

Google Scholar

[39] Y. Liu, D. Favier: Acta Mater. Vol. 48 (2000), p.3489.

Google Scholar

[40] E. Hornbogen: J. Mater. Sci. Vol. 38 (2003), p.1.

Google Scholar

[41] K. Otsuka, X. Ren: Mater. Sci. Eng. Vol. A312 (2001), p.207.

Google Scholar

[42] E. Hornbogen: J. Mater. Sci. Vol. 39 (2004), p.385.

Google Scholar