Experimental Procedure Definition for Evaluating the Formability at Warm Temperatures of AZ31 Magnesium Alloy

Article Preview

Abstract:

In the present work the definition of a test procedure for evaluating the formability of Mg alloy thin sheets was investigated taking into account both temperature and strain rate. A numericalexperimental approach was adopted by the authors: numerical simulations were run with the aim of: (i) defining the punch geometry of the formability test equipment in order to have a uniform, fast and constant temperature distribution on the specimen; (ii) setting the test operating conditions in order to force the specimen failure in a region where temperature and strain can be easily acquired. Some formability tests were performed and strain fields were measured using an optical measurement system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

July 2007

Export:

Price:

[1] Yin D.L., Zhang K.F., Wang G.F., Han W.B.: Warm deformation behaviour of hot-rolled AZ31 Mg alloy; Material Science & Engineering, A392, pp.320-325 (2005).

DOI: 10.1016/j.msea.2004.09.039

Google Scholar

[2] T. Naka, G. Torikai, R. Hino, F. Yoshida: The effects of temperature and forming speed on FLD; International Journal of Material Processing Technology, Vol. 113, pp.648-653 (2001).

DOI: 10.1016/s0924-0136(01)00650-1

Google Scholar

[3] Y. Dahan, Y. Chastel, P. Duroux, P. Hein, E. Massoni, J. Wilsius: Formability investigations for the hot stamping process, Proceedings of the IDDRG conference, pp.395-402 (2006).

Google Scholar

[4] Turetta A., Ghiotti A., Bruschi S.: Testing material formability in hot stamping operations; Proceedings of the IDDRG conference, pp.99-104 (2006).

Google Scholar

[5] Palumbo G., Sorgente D., Tricarico, S.H. Zhang, W.T. Zheng, L. X. Zhou: Formability evaluation in warm conditions of AZ31 magnesium alloy; Proceedings of the IDDRG conference, pp.59-66 (2006).

Google Scholar

[6] Bruni C., Forcellese A., Gabrielli F., Palumbo G., Sorgente D., Tricarico L., Simoncini M.: Bending of Magnesium Stripes at Elevated Temperatures; Proceedings of ESAFORM conference, pp.271-274 (2006).

Google Scholar

[7] Palumbo G., Sorgente D., Tricarico L., Zhang S.H., Zheng W.T.: Numerical and experimental analysis of the Mg alloy formability when superimposing a thermal gradient, Contemporary Achiev. in Mechanics, Manuf. and Material Science, AMME World Press, pp.780-787 (2006).

Google Scholar

[8] Palumbo G., Sorgente D., Tricarico L., Xu Y.C., Zhang S.H., Zheng W.T.: Numerical and experimental investigations of the heating and forming phase in the Warm Deep Drawing process of AZ31 sheets, accepted for publication in the Journal of Mater. Proces. Tech.

DOI: 10.1016/j.jmatprotec.2007.03.095

Google Scholar

[9] Liebertz H. et alii: Guideline for the determination of forming limit curves; Proceedings of the IDDRG conference, pp.216-224 (2004).

Google Scholar

[10] Fuh-Kuo Chen., Tyng-Bin Huang: Formability of stamping magnesium-alloy AZ31 sheets; Journal of Materials Processing Technology, Vol. 142, pp.643-647 (2003).

DOI: 10.1016/s0924-0136(03)00684-8

Google Scholar

[11] M. Redecker, K. Roll, S. Hong, H. Hoffmann: Experimental identification and numerical verification of the process window in the warm forming of magnesium sheet metal (az31); Proceedings of the IDDRG conference, pp.311-318 (2006).

Google Scholar

[12] Zhang K.F., Yin D.L., Wu D.Z.: Formability of AZ31 magnesium alloy sheets at warm working conditions; Int. Journal of Machine Tools & Manufacture, Vol. 146, pp.1276-1280 (2006).

DOI: 10.1016/j.ijmachtools.2006.01.014

Google Scholar