Study of Memristive Elements Networks

Article Preview

Abstract:

The existence of the fourth fundamental circuit element, the memristor, was first postulated over 30 years ago by Leon Chua. The implementation of the first modern memristor prototype by Hewlett Packard Laboratories in 2008 initiated a great scientific interest for these unique nanoelectronic devices and currently, there is a growing variety of systems that exhibit memristive behavior. However, most of the research has focused on the properties of the single devices, therefore very little is known about their response when these devices are organized into networks. In this work, the composite characteristics of memristive elements connected in network configurations are studied and the relationships among the single devices are investigated. We finally show how the threshold-dependent nonlinear memristive behavior could be elaborated to make possible the development of novel and sophisticated digital/analog memristive nanosystems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-14

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] T. Prodromakis, C. Toumazou, L. O. Chua, Two centuries of memristors, Nature Materials 6 (2012) 477 – 557

DOI: 10.1038/nmat3338

Google Scholar

[2] L. O. Chua, Memristor - The Missing Circuit Element, IEEE Trans. Circuit Theory 18 (1971) 507 – 519

DOI: 10.1109/tct.1971.1083337

Google Scholar

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature 453 (2008) 80 – 83

DOI: 10.1038/nature06932

Google Scholar

[4] S.-J. Ham, J.-H. Kim, K.-S. Min, Device/Circuit Co-Design Guide for Passive Memristor Array with Non-Linear Current-Voltage Behavior, J. Nanosci. Nanotechnol. 13 (2013) 6451 – 6454

DOI: 10.1166/jnn.2013.7629

Google Scholar

[5] C.-R. Han, S.-J. Lee, K.-S. Oh, K. Cho, Memristor-MOS Analog Correlator for Pattern Recognition System, J. Nanosci. Nanotechnol. 13 (2013) 3365 – 3370

DOI: 10.1166/jnn.2013.7263

Google Scholar

[6] M. Li, H. Deng, M. Wei, W. W. Qiu, J. Q. Yao, X. R. Deng, Q. L. Gao, J. T. Jiang, G. J. Wen, The Recent Advances of Research on Memristor and Memristive Characteristic Devices, Advanced Materials Research 685 (2013) 201 – 206

DOI: 10.4028/www.scientific.net/amr.685.201

Google Scholar

[7] I. Vourkas, G. Ch. Sirakoulis, A Novel Design and Modeling Paradigm for Memristor-based Crossbar Circuits, IEEE Trans. Nanotechnol. 6 (2012) 1151 – 1159

DOI: 10.1109/tnano.2012.2217153

Google Scholar

[8] Y. V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems, Advances in Physics 2 (2011) 145 – 227

DOI: 10.1080/00018732.2010.544961

Google Scholar

[9] C. R. Yang, T. P. Teng, Y. Y. Yeh, Characterizations and Process Parameters of Titanium Dioxide Thin Film by RF Sputtering, Journal of Nano Research 22 (2013) 9 – 21

DOI: 10.4028/www.scientific.net/jnanor.22.9

Google Scholar

[10] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, R. S. Williams, Switching dynamics in titanium dioxide memristive devices, J. Appl. Physics 106-074508 (2009)

DOI: 10.1063/1.3236506

Google Scholar

[11] J. H. Deng, L. Wang, Q. H. Liu, A Macromodel of Memristor Using Symbolically Defined Devices, Applied Mechanics and Materials 195 – 196 (2012) 245 – 248

DOI: 10.4028/www.scientific.net/amm.195-196.245

Google Scholar