Influence of Gama Prime Changes on the Heat Transport Phenomena of a Nickel Super Alloy

Article Preview

Abstract:

The paper deals with the influence of microstructural changes of the nickel superalloy (NiS) on heat transport changes in MAR-M247. The dissolving annealing within the temperature interval of 900 – 1240°C and cooling in water has been applied to enhance structural changes. It has been shown that the narrow connection between the γ’ phase morphology changes, as well as values of density, thermal conductivity and specific heat capacity. In the dissolving annealing process, the γ’ particles change in certain cycles from fine to rough and back to fine one. Obtained results of changes of thermal conductivity, density and specific heat capacity correlate with image analysis and electron microscopy observation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

November 2017

Export:

Price:

* - Corresponding Author

[1] P.R. Sahm, M.O Spieder, High temperature materials for gas turbines. Elsevier Sci. Publ. Comp, 1974, Amsterdam-New York.

Google Scholar

[2] F.A Crane, J.A Charles. Selection and use of engineering materials. Butterword, 1986, London/Welington.

Google Scholar

[3] A. Hernas, Z. Jonsta, M. Tvrdy, L. Cizek, J.Z Purmensky,.et.al. Zarupevne oceli a slitiny [Refractory Steels and Alloys in Czech]. 2nd ed. ES VSB-TU Ostrava, 2009, p.392. ISBN 978-80-248-2187-0.

Google Scholar

[4] G. Härkegard, J.Y. Guedou, Advanced power engineering, P II, Liege (1988).

Google Scholar

[5] S. Zla, B. Smetana, M. Zaludova, J. Dobrovska, A. Kalup, V. Vodarek, K. Konečna, Determination of thermophysical and structural properties of nickel superalloy. Metalurgija , 2015, 54, 4, pp.639-642.

Google Scholar

[6] L.A. Reyes, P. Paramo, A.S. Zamarripa; M. de la Garza, M.P.G. Matta . Grain size modeling of a Ni-base superalloy using cellular automata algorithm. Materials & design 83, 2015, pp.301-307.

DOI: 10.1016/j.matdes.2015.06.068

Google Scholar

[7] Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li. EBSD study of a hot deformed nickel-based superalloy. Journal of alloys and compounds, 2015, 640, pp.101-113.

DOI: 10.1016/j.jallcom.2015.04.008

Google Scholar

[8] I.S. Kim; B. G. Choi, J.E. Jung, J. Do, C.Y. Jo. Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys.  Materials characterization, 2015, 106, pp.375-381.

DOI: 10.1016/j.matchar.2015.06.011

Google Scholar

[9] S. Neumeier; L.P Freund, M. Goeken. Novel wrought gamma/gamma ' cobalt base superalloys with high strength and improved oxidation resistance. Scripta materialia, 2015,109, pp.104-107.

DOI: 10.1016/j.scriptamat.2015.07.030

Google Scholar

[10] D. Erdeniz, K.W. Sharp, D.C. Dunand, Transient liquid-phase bonded 3D woven Ni-based superalloys. Scipta materialia, 2015, 108, pp.60-63.

DOI: 10.1016/j.scriptamat.2015.06.016

Google Scholar

[11] K. Matuszewski; A. Mueller; N. Ritter; R. Rettig, K.J. Kurzydlowski, R.F. Singer, On the Thermodynamics and Kinetics of TCP Phase Precipitation in Re- and Ru- Containing Ni-base Superalloys. Advanced engineerings materials, 2015, 17, 8, pp.1127-1133.

DOI: 10.1002/adem.201500173

Google Scholar

[12] P. Jonsta, I. Vlckova, L. Kristak, I. Spicka, Z. Jonsta,. Contribution to the thermal properties of selected steels. Metalurgija, 2015, 54, 1, pp.187-190.

Google Scholar

[13] J.M. Donachie, J.S. Donachie, Superalloys. A Technical Guide, ASM Internatinal (2002).

Google Scholar

[14] P. Kostial, I. Ruziak, Z. Jancikova, Patent NO 303269 CS, (2012).

Google Scholar

[15] P. Kostial, I. Spicka, Z. Jancikova, J. Valicek, M. Harnicarová, J. Hlinka. On Experimental Thermal Analysis of Solid Materials. Measurement science review, 2014, 14, 6, pp.317-322.

Google Scholar

[16] P. Jonsta, K. Konecna,Z. Jonsta, M. Gabcová, K. Hrbacek, Structural Phase Analysis of Nickel Super-Alloy MAR-M247. In Proceedings of the 21th International Metallurgical & Materials Conference METAL 2012. Brno (Czech Republic): Tanger, s. r. o., 2012, CD-ROM. ISBN 978-80-87294-29-1.

DOI: 10.26552/com.c.2012.4.43-47

Google Scholar

[17] C.Y. Ho, T.K. Chu, Electrical resistivity and thermal conductivity of nine selected AISI stainless steels Report 45, September (1977).

DOI: 10.1007/978-1-4615-9083-5_12

Google Scholar

[18] Blücher. Available online http://www.blucherdrains.com/Resources/Technical/Stainless_Steel_Properties. (16.03.2016).

Google Scholar

[19] Austenitic stainless steel. Available online: http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/ss.html. (01.04.2016).

Google Scholar

[20] Azo Materials. Available online: http://www.azom.com/article.aspx?ArticleID=5068. (17.12.2009).

Google Scholar

[21] A.J. Toroba,O. Koeser, Calba, L. Maestro, E.C. Morelli, M. Rahimian, S. Milenkovic, I. Sabirov, J. Llorca. Investment casting of nozzle guide vanes from nickel-based superalloys: part 1-thermal calibration and porosity prediction. Materials and manufacturing innovation, 2014, 3:25.

DOI: 10.1186/s40192-014-0025-5

Google Scholar

[22] R. Przeliorz, J. Piątkowski, Thermophysical properties of nickel-based cast superalloys. Metalurgija, 2015, 54, 3, pp.543-546.

Google Scholar

[23] Azo Materials. Available online: http://www.azom.com/article.aspx?ArticleID=75. (09.02.2001).

Google Scholar

[24] Azo Materials. Available online: http://www.azom.com/properties.aspx?ArticleID=261. (03.05.2001).

Google Scholar

[25] W.L. Guesser, I. Masiero, E. Melleras, C.S. Cabezas, Thermal Conductivity of Gray Iron and Compacted Graphite Iron Used for Cylinder Heads. Revista Materia, 2005, 10, 2, pp.265-272.

Google Scholar