The Analysis of Heat Transfer and Thermal Stresses in Thermal Barrier Coatings under Exploitation

Article Preview

Abstract:

Effectiveness of internal combustion turbines in aero-engines is limited by comparatively low temperature of exhaust gas at the entry to turbine of the engine. A thermal efficiency and other capacities of turbine strongly depend on the ratio of the highest to the lowest temperature of a working medium. Continuous endeavour to increase the thermal resistance of engine elements requires, apart from laboratory investigations, also numerical studies in 3D of different aero-engine parts. In the present work, the effectiveness of the protection of turbine blades by thermal barrier coating and internal cooling under thermal shock cooling was analysed numerically using the ABAQUS code. The phenomenon of heating the blade from temperature of combustion gases was studied. This investigation was preceded by the CFD analysis in the ANSYS Fluent program which allows for calculation of the temperature of combustion gases. The analysis was conducted for different levels of the shock temperature, different thickness of applied TBC, produced from different kinds of materials.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

530-535

Citation:

Online since:

April 2012

Export:

Price:

[1] N. Noda: J. Thermal Stress Vol. 22 (1999), p.477.

Google Scholar

[2] T. Sadowski: Non-symmetric thermal shock in Ceramic Matrix Composite (CMC) materials, in: R. de Borst, T. Sadowski (Eds. ), Lecture notes on composite materials – Current topics and achievements, Springer, (2008).

DOI: 10.1007/978-1-4020-8772-1_4

Google Scholar

[3] L. Li, Z. Lu, J. Wang, Z. Yue: Computer-Aided Design Vol. 39 (2007), p.494.

Google Scholar

[4] A. Hernandez Rossette, Z. Mazur C, A. Demeulenaere, J.A. Roque Lopez Hernandez: Appl. Thermal Eng. Vol. 29 (2009), p.3056.

Google Scholar

[5] A.K. Ray, J.D. Whittenberger: Mat. Sci. Eng. A Vol. 509 (2009), p.111.

Google Scholar

[6] D. -H. Rhee, H.H. Cho: Int. J. Ther. Sci. Vol. 47 (2008), p.1528.

Google Scholar

[7] D. -H. Rhee, H.H. Cho: Int. J. Ther. Sci. Vol. 47 (2008), p.1544.

Google Scholar

[8] G. Thurn, G.A. Schneider, F. Aldinger: Mat. Sci. Eng A Vol. 233 (1997), p.167.

Google Scholar

[9] T. Sadowski, S. Ataya, K. Nakonieczny: Comp. Mater. Sci. Vol. 46 (2009), 687.

Google Scholar

[10] T. Sadowski, K. Nakonieczny: Comput. Mat. Sci. Vol. 43 (2008), p.171.

Google Scholar

[11] T. Sadowski, M. Boniecki, Z. Librant, K. Nakonieczny: Int. J. Heat and Mass Transfer Vol. 50 (2007), p.4461.

DOI: 10.1016/j.ijheatmasstransfer.2007.05.002

Google Scholar

[12] K. Nakonieczny, T. Sadowski: Comp. Mater. Sci. Vol. 44 (2009), p.1307.

Google Scholar

[13] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit: Prog. Mat. Sci. Vol. 46 (2001), p.505.

Google Scholar

[14] J.R. Nichols: MRS Bull Vol. 28 (2003), p.659.

Google Scholar

[15] N.P. Padture, M. Gell, J.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[16] T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub, W.G. Sloof: Acta Mater. Vol. 57 (2009), p.2624.

DOI: 10.1016/j.actamat.2009.01.022

Google Scholar

[17] E. Tzimas, H. Mullejans, S.D. Peteves, J. Bressers, W. Stamm: Acta Mater. Vol. 48 (2000), p.4699.

Google Scholar

[18] T. Sadowski, P. Golewski: Comp. Mater. Sci. Vol. 50 (2011), p.1326.

Google Scholar

[19] ANSYS Fluent 12 Theory Guide, April (2009).

Google Scholar

[20] A.S. Demirkiran, E. Avci: Surf. Coat. Technol. Vol. 116-119 (1999), p.292.

Google Scholar