Overview of PCMs for Concentrated Solar Power in the Temperature Range 200 to 350°C

Article Preview

Abstract:

Thermal energy storage is an essential advantage of solar thermal power plants. The present paper focuses on latent heat storage using a phase change material (PCM). The paper lists literature and gives the current status of PCM work in the temperature range 200 to 350 °C. The system KNO3-NaNO3 is discussed in detail in terms of their thermo-physical properties in the liquid and solid phase. A comparison of literature data and own measurements for the density, heat capacity, thermal diffusivity and thermal conductivity is presented. Measurement results with the following methods are discussed: helium pycnometer, differential scanning calorimeter (DSC) and laser flash. Missing data of the thermal diffusivity and thermal conductivity are partly supplemented. Consistent thermo-physical properties in the liquid phase are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-277

Citation:

Online since:

October 2010

Export:

Price:

[1] W. -D. Steinmann, D. Laing, R. Tamme: J. Sol. Energy Eng. Vol. 131 (2009), p.041009/1-4.

Google Scholar

[2] T. Bauer et al.: Elec. Proc. 11th Int. Conf. on Therm. Energy Storage-Effstock (2009), Paper 4.

Google Scholar

[3] T. Bauer et al.: Elec. Proc. of the Eurosun Conf., Lisbon (2008), Paper 163.

Google Scholar

[4] A. Verma, K.E. Johnson, E.O. Sherman: Can. J. of Chem. Eng. Vol. 54 (1976), pp.285-289.

Google Scholar

[5] G.J. Janz, C.B. Allen, J.R. Downey, R.P.T. Tomkins: NSRDS-NBS 61 Part I.

Google Scholar

[6] M.M. Kenisarin: Renewable and Sustainable Energy Reviews Vol. 14 (2010), pp.955-970.

Google Scholar

[7] Y. Takahashi et al.: Thermochimica Acta Vol. 121 (1987), pp.193-202.

Google Scholar

[8] R.P. Tye, J.G. Bourne, A.O. Desjarlais: Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Impact, NASA Report, NAS-3-19716 (1976).

Google Scholar

[9] M. Kamimoto, T. Tanaka, T. Tani, T. Horigome: Solar Energy Vol. 24 (1980), pp.581-587.

DOI: 10.1016/0038-092x(80)90357-6

Google Scholar

[10] D. Heine, F. Heess, M. Groll: Proc. 14th lntersoc. Energy Conv. Eng. Conf. (1979), pp.459-466.

Google Scholar

[11] Y. Takahashi et al.: Thermochimica Acta Vol. 123 (1988), pp.233-245.

Google Scholar

[12] B.M. Cohen et al.: Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation, Report, Comstock & Wescott DOE/NASA/0615-79/1 (1978).

Google Scholar

[13] R.J. Calkins et al.: Conceptual design selection and development of a latent-heat thermal-energy-storage subsystem for a saturated-steam solar receiver and load, Sandia Lab. Rep. SAND-81-8184 (1981).

DOI: 10.2172/6172137

Google Scholar

[14] Y. Takahashi, R. Sakamoto, M. Kamimoto: Int. J. of Thermoph. Vol. 9 (1988), pp.1081-1090.

Google Scholar

[15] H. Michels, R. Pitz-Paal: Solar Energy Vol. 81 (2007), pp.829-837.

Google Scholar

[16] R.W. Carling: Thermochimica Acta Vol. 60 (1983), pp.265-275.

Google Scholar

[17] D.A. Nissen, D.E. Meeker: Inorganic Chemistry Vol. 22 (1983), pp.716-721.

Google Scholar

[18] C.M. Kramer, Z.A. Munir, J.V. Volponi: Thermochimica Acta Vol. 55 (1982), pp.11-17.

Google Scholar

[19] Y.S. Touloukian et al.: Thermophysical Properties of Matter, Vol. 10 (1979) Plenum.

Google Scholar

[20] W. Laue et al.: Nitrates and Nitrites, in Ullmann's Encycl. of Industrial Chemistry (1998) 6. Edition.

Google Scholar

[21] D.J. Rogers, G.J. Janz: Journal of Chemical & Engineering Data Vol. 27 (1982), pp.424-428.

Google Scholar

[22] R.W. Berg, D.H. Kerridge: Dalton Transactions (2004), pp.2224-2229.

Google Scholar

[23] X. Zhang, J. Tian, K. Xu, Y. Gao: J. of Phase Equil. and Diffusion Vol. 24 (2003), pp.441-446.

Google Scholar

[24] M. Kamimoto: Thermochimica Acta Vol. 49 (1981), pp.319-331.

Google Scholar

[25] R.W. Carling et al.: Molten nitrate salt technology development, Sandia Laboratory Report, SAND80-8052 (1981).

Google Scholar

[26] D.R. Lide: Physical Constants of Inorganic Compounds, in CRC Handbook of Chemistry and Physics, Taylor & Francis (2006-2007) 87. Edition.

Google Scholar

[27] H. Schinke, F. Sauerwald: Z. für anorganische Chemie Vol. 304 (1960) pp.25-36 (in German).

Google Scholar

[28] M.M. Vetyukov et al.: Zhurnal Prikladnoi Khimii Vol. 36 (1963) pp.2385-2391.

Google Scholar

[29] V.D. Polyakov et al.: Izvest. Siktora Fiz. Khim. Anal. Vol. 26 (1955), pp.164-172 (in Russian).

Google Scholar

[30] D.A. Nissen: Journal of Chemical & Engineering Data Vol. 27, (1982) pp.269-273.

Google Scholar

[31] I.G. Murgulescu, Ş Zuca: Electrochimica Acta Vol. 14 (1969), pp.519-526.

Google Scholar

[32] P. Nguyen-Duy, E.A. Dancy: Thermochimica Acta Vol. 39 (1980), pp.95-102.

Google Scholar

[33] N.K. Voskresenskaya et al.: Zhurnal Neorg. Khimii Vol. 21 (1948), pp.18-25 (in Russian).

Google Scholar

[34] R. Tufeu, J.P. Petitet, L. Denielou, B. Le Neindre: Int. J. of Therm. Vol. 6 (1985), pp.315-330.

Google Scholar

[35] T. Foosnæs et al.: Thermal Conductivity of Nitrate Mixtures, Sandia Lab. Report SAND80-8191 (1982).

Google Scholar

[36] J. McDonald, H.D. Davis: Journal of Physical Chemistry Vol. 74 (1970), pp.725-730.

Google Scholar

[37] T. Omotani, A. Nagashima: J. Chem. Eng. Data Vol. 29 (1984), pp.1-3.

Google Scholar

[38] R.M. DiGuilio, A.S. Teja: International Journal of Thermophysics Vol. 13 (1992), pp.575-592.

Google Scholar

[39] H. Bloom, A. Doroszkowski, S.B. Tricklebank: Aus. J. of Chem. Vol. 18 (1965), pp.1171-1176.

Google Scholar