Characterization and Applications of Calcium Ferrites Based Materials Containing Active Oxygen Species

Article Preview

Abstract:

Characterization and application of calcium ferrites based solid solutions containing active oxygen species for catalysts in propylene total and methane partial oxidation has been studied. The calcium ferrite based solutions containing brownmillerite phases showed a structural transition based on the migration of oxide ions at high temperature. The calcium ferrite solution provided two types of active oxygen species due to the existence of the brownmillerite phase. These oxygen species individually played important roles in the propylene and methane oxidation mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2169-2175

Citation:

Online since:

October 2006

Export:

Price:

[1] Saleh, H. I.: Synthesis and Formation Mechanisms of Calcium Ferrite Compounds, J. Mater. Sci. Technol., Vol. 20, No. 5, (2004).

Google Scholar

[2] Berastegui, P., Eriksson, S. -G. and Hull, S.: A Neutron Diffraction Study of the Temperature Dependence of Ca2Fe2O5, Mater. Res. Bull., Vol. 34, No. 2, pp.303-314, (1999).

DOI: 10.1016/s0025-5408(99)00007-0

Google Scholar

[3] Tejuca, L.G. and Fierro, J. L (Eds. ): "Properties and Applications of Perovskite-type Oxides, Mrcel Dekker, New York, (1993).

Google Scholar

[4] Voorhoeve, R.J.H. Remeika and J.P., Johnson, D.W., Rare-Earth Manganites: Catalysts with Low Ammonia Yield in the Reduction of Nitrogen Oxides, Science, Vol. 180, No. 4081, pp.62-64, (1993).

DOI: 10.1126/science.180.4081.62

Google Scholar

[5] Goodenough, J.B., Ruiz-Diaz, J.E. and Zhen, Y.S., Oxide-ion Conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr), Solid State Ionics, Vol. 44, pp.21-31, (1990).

DOI: 10.1016/0167-2738(90)90039-t

Google Scholar

[6] Lima, M. S. and Assaf., J. M.: Synthesis and Characterization of LaNiO3, LaNi(1-x)FexO3 and LaNi(1-x)CoxO3 perovskite Oxides for Catalysis Application, Mater. Res., Vol. 5, No. 3, pp.329-335, (2002).

DOI: 10.1590/s1516-14392002000300018

Google Scholar

[7] Sokolovskii, V.D., Boreskov, G.K., Osipova, Z.G., Maksimov, N.G., Anufrienko, V.F., Davydov, A.A. and Komarova, M.P.: Reactivity of Molecular of Absorbed Oxygen on the Surface of Titanium Dioxide, Theo. Exper. Chem., Vol. 9, pp.425-428, (1975).

DOI: 10.1007/bf00523758

Google Scholar

[8] Giamello, E., Sojka, S., Che, M. and Zecchina, A.: Spectroscopic Study of Superoxide Species Formd by Low-Temperature Adsorption of Oxygen onto CoO-MgO Solid Solutions: An Example of Synthetic Heterogeneous Oxygen Carriers, J. Phys. Chem., Vol. 90, pp.6084-6091, (1986).

DOI: 10.1021/j100281a008

Google Scholar

[9] Zecchina, A., Spoto, G. and Coluccia, S.: Surfece Dionxgen Adducts on MgO-CoO Solid Solutions: Analogy with Cobalt-based Homogeous Oxygen Carriers, J. Mol. Catal., Vol. 14, p.351, (1982).

DOI: 10.1016/0304-5102(82)80095-3

Google Scholar

[10] Fujita, S., Nakano, H., Suzuki, K., Mori, T. and Masuda H.: Oxdative Destration of Hydrocabons on Ca12Al14-xSixO33+0. 5x (0 ≤ x ≤ 4) with Radical Oxygen Occluded in Nanopores, Catal. Lett. Vol. 106, No. 3-4, pp.139-143, (2006).

DOI: 10.1007/s10562-005-9621-5

Google Scholar

[11] Fujita, S., Ohkawa, M., Suzuki, K., Nakano, H., Mori, T. and Masuda, H.: Controlling the Quantity of Radical Oxygen Occluded in a New Aluminum Silicate with Nanopores, Chem. Mater. Vol. 15, pp.4879-4881, (2003).

DOI: 10.1021/cm030562s

Google Scholar

[12] Sato, K., Iritani, J., Miyamoto, R., Fujita S., Suzuki K., Ohkawa M. and Mori T.: Reactivity of Superoxide ions (O2) Occluded in Micropores of Caclicum Aluminosilicate Varied via Substitution with Transition Metal ions, Stud. Surf. Sci. Catal. Vol. 158, pp.2001-2008, (2005).

DOI: 10.1016/s0167-2991(05)80566-x

Google Scholar