Investigation of the Capability of Flux of Force Oriented Lattice Structures for Lightweight Design

Article Preview

Abstract:

Production technologies often turn out to be a limiting factor for the geometrical freedom in part design. By the use of Additive Layer Manufacturing processes, the existing restrictions can be negotiated due to their generative character. To exploit their whole capabilities, new approaches in part design have to be applied. One of these numerous possibilities is mesoscopic lightweight design, like for example by the use of lattice structures instead of massive material accumulations. Currently, these structures have a periodic build-up, which leads to unfavourable stress states like bending loads in the single strut elements. By an adaption of the course of the structure to the flux of force inside a part, predominantly push and pull forces appear inside the struts, which is very positive for the structures lightweight performance. To prove the capability of this optimization approach, Finite-Element-Analyses have been executed for periodic and for flux of force adapted lattice structures. Thus, the great potential of this optimization method has been shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-87

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] Zäh M F (2006) Wirtschaftliche Fertigung mit Rapid-Technologien. Carl Hanser Verlag, München.

DOI: 10.3139/9783446439573.fm

Google Scholar

[2] Yadroitsev I (2009) Selective laser melting – Direct manufacturing of 3D-objects by selective laser melting of metal powders. Lambert Academic Publishing AG & Co. KG, Saarbrücken.

Google Scholar

[3] Reinhart G, Teufelhart S, Ott M, Schilp J (2010).

Google Scholar

[4] Kruth J-P, Levy G, Klocke F, Childs T H C (2007) Consolidation phenomena in laser and powder-based layered manufacturing. Annals of the CIRP Vol. 56/2/(2007).

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[5] Niemann G, Winter H, Höhn B-R (2001) Maschinenelemente Band 1: Konstruktion und Berechnung von Verbindungen, Lagern, Wellen, 3er edn. Springer-Verlag, Berlin, Heidelberg.

DOI: 10.1007/978-3-662-55482-1

Google Scholar

[6] Reinhart G, Teufelhart S (2011) Approach for Load-adapted Optimization of Generative Manufactured Lattice Structures. In: Spath D, Ilg R, Krause T (eds) ICPR21, 21st International Conference on Production Research, Conference Proceedings.

DOI: 10.1016/j.phpro.2011.03.049

Google Scholar

[7] Rehme O (2012) Cellular Design for Laser Freeform Fabrication. Dissertation, Technische Universität Hamburg-Harburg, Cuvillier Verlag, Göttingen.

Google Scholar

[8] Namasivayam U M, Seepersad C C (2011) Topology design and freeform fabrication of deployable structures with lattice skins. Rapid Prototyping Journal 17/1 (2011) 5-6, ISSN 1355-2546.

DOI: 10.1108/13552541111098581

Google Scholar

[9] Cansizoglu O, Harrysson O L A, West H A, Cormier D R, Mahale T (2008) Applications of structural optimization in direct metal fabrication. Rapid Prototyping Journal 14/2 (2008) 114-122, ISSN 1355-2546.

DOI: 10.1108/13552540810862082

Google Scholar

[10] Moldenhauer H (2011) Tailored fiber placement – Berechnung variabler Faserverläufe zur Optimierung von Compositestrukturen. lightweightdesign 1/2011 51-56.

DOI: 10.1365/s35725-011-0009-8

Google Scholar

[11] Hörmann A (2006) Ermittlung optimierter Stabwerkmodelle auf Basis des Kraftflusses als Anwendung plattformunabhängiger Prozesskopplung. Dissertation, Technische Universität München.

Google Scholar

[12] Reinhart G, Teufelhart S (2011) Load-Adapted Design of Generative Manufactured Lattice Structures. Physics Procedia 12 (2011) pp.385-392.

DOI: 10.1016/j.phpro.2011.03.049

Google Scholar