Density Functional Theory Study on the Absorption of CO2 by the Ionic Liquid of 1-butyl-3-methylimidazolium Acetate

Article Preview

Abstract:

The absorptions of CO2 on the 1-butyl-3-methylimidazolium acetate ([Bmi [Ac]) with different substituents are calculated systematically at GGA/PW91 level. Three hydrogen bonds are formed between [A and cations of 1-n-[Bmi [A ([NBmi+) and 1-tert-[Bmi [A ([TBmi+). The interaction between CO2 and the [NBmi [A by a C-O bond is much weaker than that with the [TBmi [A by forming a O...O...C...C four member-ring. The chemisorption of CO2 on the ion pairs of [NBmi [A is much weaker than that on the [TBmi [A, resulted from the absorption energies analysis. The frontier molecular orbitals shows the electronic density overlap between absorbed CO2 and the [A in CO2-[NBmi [A is much weaker than that in [TBmi [A. Therefore, the chemisorption of CO2 on the ion pair of [NBmi [A is much weaker than that on the [TBmi [A. The ionic liquids based [NBmi+ can be used repetitively, and the adsorbed CO2 would be easier desorbed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 807-809)

Pages:

543-548

Citation:

Online since:

September 2013

Export:

Price:

[1] D'Alessandro, D. M.; Smit, B.; Long, J. R. Chem. Int. Ed. 2010, 49, 6058−6082.

Google Scholar

[2] Paulechka, Y. U.; Kabo, G. J.; Blokhin, A. V.; Vydrov, O. A.; Magee, J. W.; Frenkel, M. J. Chem. Eng. Data 2003, 48, 457–462.

DOI: 10.1021/je025591i

Google Scholar

[3] Domanska, U.; Bogel-Lukasik, R. J. Phys. Chem. B 2005, 109, 12124–12132.

Google Scholar

[4] Welton, T. Chem. Rev. 1999, 99, 2071–(2083).

Google Scholar

[5] Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792–793.

Google Scholar

[6] Maginn, E. J. Quarterly Technical Report to Department of Energy (DOE); Sept30, (2006).

Google Scholar

[7] Shiflett, M. B.; Drew, D. W.; Cantini,R. A.; Yokozeki, A. Energy Fuels 2010, 24, 5781–5789.

DOI: 10.1021/ef100868a

Google Scholar

[8] Yokozeki, A.; Shiflett, M. B.; Junk, C. P.; Grieco, L. M.; Foo, T. J. Phys. Chem. B 2008, 112, 16654–16663.

DOI: 10.1021/jp805784u

Google Scholar

[9] Anderson, J. L.; Dixom, J. K.; Brennecke, J. F. Acc. Chem. Res., 2007, 40, 1208–1216.

Google Scholar

[10] Adam, D. Nature. 2000, 407, 938–941.

Google Scholar

[11] Dong, K.; Zhang, S. J.; Wang, D. X.; Yao, X. Q.; J. Phys. Chem. A, 2006, 110, 9775–9782.

Google Scholar

[12] Bhargava, B. L.; Balasubramanian, S. Chem. Phys. Lett. 2007, 444, 242–246.

Google Scholar

[13] Shi W.; Myers, C. R.; Luebke, D. R.; Steckel, J. A.; Sorescu, D. C. J. Phys. Chem. B 2012, 116, 283–295.

Google Scholar

[14] Cabaço, M. I.; Besnard, M.; Danten, Y.; Coutinho, J. A. P. J. Phys. Chem. A 2012, 116, 1605−1620.

Google Scholar

[15] Delley, B. J. Chem. Phys. 1990, 92, 508–518.

Google Scholar

[16] Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, A1133–A1138.

Google Scholar

[17] Perdew, J. P.; Wang,Y. Phys. Rev. B 1992, 45, 13244–13249.

Google Scholar

[18] Bondi, A. J. Phys. Chem. 1964, 68, 441-451.

Google Scholar