Magnetoelectric Properties of BaTiO3 – Co0.5Ni0.5Fe2O4 Composites Prepared by the Conventional Mixed Oxide Method

Article Preview

Abstract:

Multiferroics, which display simultaneous ferrimagnetic and ferroelectric properties, have been interesting recently because of their potentially significant applications in multifunctional devices such as magnetic resonance, drug delivery, high-density data storage, ferrofluid technology, etc. Composites combining BaTiO3 with Co0.5Ni0.5Fe2O4 have influenced the interest of many researchers, due to their outstanding and distinguished character called magnetoelectric (ME). In this work, ferrimagnetic-ferroelectric composites of BaTiO3 nanopowder and Co0.5Ni0.5Fe2O4 nanopowders were prepared by a conventional mixed oxide method. The multiferroic ceramics were compounded with the formula, (1-x)BaTiO3-(x)Co0.5Ni0.5Fe2O4, in which x = 0, 0.05, 0.10, 0.20 and 0.35. All of the compositions were analyzed by an X-ray diffractometer (XRD) in order to reveal the phase of perovskite and spinal structure. Scanning electron microscopy (SEM) was used to examine the variation of morphology and grain size of the composited ceramics. The magnetism of all the ceramics was measured using a vibrating sample magnetometer (VSM). The results showed that microstructure and the amount of ferrite are related strongly with magnetization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-26

Citation:

Online since:

September 2013

Export:

Price:

[1] A. K. Zvezdin, A. S. Logginov, G. A. Meshkov, A. P. Pyatakov, Miltiferroic: Promising Materials for Microelectronics, Spintronics, and Sensor Technique, ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physis, 71 (2007) pp.1561-1562, [Original Russian Text © A. S. Logginov, G. A. Meshkov, A. P. Pyatakov, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 71, pp.1604-1605].

DOI: 10.3103/s1062873807110263

Google Scholar

[2] J. Wang, H. Sheng, V. Nagarajan, Science, 299 (2003) p.1791.

Google Scholar

[3] A. K. Zvedin, A. P. Pyatakov, Usp. Fiz. Nauk, 174 (2004) p.465.

Google Scholar

[4] T. Kimura, T. Goto, H. Shintani, Nature, 426 (2003) p.55.

Google Scholar

[5] L. M. Hrib, O. F. Caltun, Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite-barium tiatanate composites, J. Alloys Compd., 509 (2011) pp.6644-6648.

DOI: 10.1016/j.jallcom.2011.03.121

Google Scholar

[6] H.Zeng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-Co0.5Ni0.5Fe2O4 Nanostructures, Science, 303 (2004) pp.661-663.

DOI: 10.1126/science.1094207

Google Scholar

[7] I. H. Gul, F. Amin, A. Z. Abbasi, M. Anis-ur-Rehman, A. Maqsood, Physical and magnetic characterization of co-precipitated nanosize Co-Ni ferrites, Scripta Mater., 56 (2007) pp.497-500.

DOI: 10.1016/j.scriptamat.2006.11.020

Google Scholar

[8] J. de Frutos, J. A. Matutes-Aquino, F. Cebollada, M.E. Botello-Zubiate, E. Menéndez, V. Corral-Flores, F. J. Jiménez, A. M. González, Synthesis and characterization of electroceramics with magnetoelectric properties, J. Eur. Ceram. Soc., 27 (2007) pp.3663-3666.

DOI: 10.1016/j.jeurceramsoc.2007.02.084

Google Scholar

[9] W. C. Vittayakorn, N. Pulphol, M. Rangson, N. Vittayakorn, Fabrications and properties of BaTiO3-CoFe2O4 nanocomposites, Integr Ferroelectr. in press.

Google Scholar

[10] V. L. Liliam, B. S. Juliana, S. A. Adriana, D. A. José, A. A. M. Waldemar, D. S. M. Nelcy, Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites, J. Phys. Chem. Solids, 73 (2012) pp.1362-1371.

Google Scholar