An Accurate Model for Predicting Retention Time of Coffee Flavor in Cigarette

Article Preview

Abstract:

The coffee flavor compounds acquire a significant place in the improving the flavor of cigarette. In the present paper, the heuristic method is used to develop quantitative relationships between the retention time (TR) and four molecular descriptors of 52 compounds. The model of heuristic method gives good statistical result. The contribution of each descriptor to structure-retention time relationships was evaluated. It indicates the importance of the atoms number and type of parameter. The proposed method can be successfully used to predict the retention time with only four molecular descriptors which can be calculated directly from molecular structure alone.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 798-799)

Pages:

1091-1094

Citation:

Online since:

September 2013

Export:

Price:

[1] Information on www. who. int/tobacco/mpower/mpower-report-full-(2008).

Google Scholar

[2] R.R. Baker, J.R. Pereira-da-Silva and G. Smith: Food Chem. Toxicol. 42 (2004), 33–37.

Google Scholar

[3] C.L. Gaworski, J.D. Heck, M.B. Bennett and M.L. Wenk: Toxicol. 139 (1999), 1-17.

Google Scholar

[4] L.F. Huang, M.J. Wu, K.J. Zhong, X.J. Sun, Y.Z. Liang, Y.H. Dai, K.L. Huang and F.Q. Guo: Anal. Chim. Acta 588 (2007), 216-223.

Google Scholar

[5] K. Bodzioch, T. Bączek, R. Kaliszan and Y. Vander-Heyden: Pharmaceut. Biomed 50 (2009), 563-569.

Google Scholar

[6] K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek and Y. Vander-Heyden: Talanta 81 (2010), 1711-1718.

DOI: 10.1016/j.talanta.2010.03.028

Google Scholar

[7] T. Bączek, R. Kaliszan, K. Novotná and P. Jandera: J. Chromatogr. A 1075 (2005), 109-115.

Google Scholar

[8] T. Hancock, R. Put, D. Coomans, Y.V. Heyden and Y. Everingham: Chemometr. Intell. Lab 76 (2005), 185-196.

Google Scholar

[9] X.Y. Li, F. Luan, H.Z. Si, Z.D. Hu and M.C. Liu: Toxicol. Lett. 175 (2007), 136-144.

Google Scholar

[10] F. Luan, C.X. Xue, R.S. Zhang, C.Y. Zhao, M.C. Liu, Z.D. Hu and B.T. Fan: Anal. Chim. Acta 537 (2005), 101-110.

Google Scholar

[11] L.T. Qin, S.S. Liu, H.L. Liu and J. Tong: J. Chromatogr. A 1216 (2009), 5302-5312.

Google Scholar

[12] H.Z. Si, H. Gao, X.J. Yao and Z.D. Hu: J. Comput. Sci. Eng. 1 (2011), 22-31.

Google Scholar

[13] X. Xu, F. Luan, H.T. Liu and Y. Gao: J. Comput. Sci. Eng. 2 (2011) 69-78.

Google Scholar

[14] HyperChem 4. 0, Hypercube, Inc.

Google Scholar

[15] MOPAC 6. 0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, (1989).

Google Scholar

[16] A.R. Katritzky, V.S. Lobanov and M. Karelson: Chem. Soc. Rev 24 (1995), 279-287.

Google Scholar

[17] A.R. Katritzky, R. Petrukhin, R. Jain and M. Karelson: Chem. Inf. Comput. Sci 41 (2001), 1521-1530.

DOI: 10.1021/ci010043e

Google Scholar

[18] H.X. Liu, C.X. Xue, R.S. Zhang, X.J. Yao, M.C. Liu, Z.D. Hu and B.T. Fan: Chem. Inf. Comput. Sci 44 (2004), 161-167.

Google Scholar

[19] H.Z. Si, T. Wang, K.J. Zhang, Z.D. Hu and B.T. Fan: Bioorgan. Med. Chem 14 (2006), 4834-4841.

Google Scholar

[20] Y.M. Dong, C.J. Liu and H.Z. Si: J. Comput. Sci. Eng. 1 (2011), 47-53.

Google Scholar

[21] W. Long, C.L. Wang, Z.W. Zhou and P.X. Liu: J. Comput. Sci. Eng. 3 (2012), 139-153.

Google Scholar