Short Review of Ultrafiltration of Polymer Membrane as a Self-Cleaning and Antifouling in the Wastewater System

Article Preview

Abstract:

This paper focuses on ultrafiltration polymer membrane for wastewater systems as a self-cleaning and antifouling. Fouling is one of the most important problems in almost all membrane processes. In this review, membrane antifouling and self-cleaning properties can be improved by using titanium dioxide (TiO2) particles and UV radiation on membrane structure and surface. Coating TiO2 particles on membrane surface is an advanced method to minimize membrane fouling. Hence, these properties can be improved the membrane performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-323

Citation:

Online since:

September 2013

Export:

Price:

[1] Water Environment Federation (WEF). Membrane systems for wastewater treatment. 2006. WEF Press, McGraw-Hill.

Google Scholar

[2] M.N. Chong, Jin B., Chow, C.W.K., Saint, C., Recent development in photocatalytic water treatment technology: A review. Water Research. 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[3] B.R. Bradley, G.T. Daigger, R. Rubin, G. Tchobanoglous, Evaluation of onsite wastewater treatment technologies using sustainable development criteria. 2002. Clean Technol. Environ. Policy 4, 87-99.

DOI: 10.1007/s10098-001-0130-y

Google Scholar

[4] L. Lapen, M., Cerezo, P. Garcı´a-Augustin, Possible reuse of treated municipal wastewater for Citrus spp. plant irrigation. 1995. Bull. Environ. Contam. Toxicol. 55, 697-703.

DOI: 10.1007/bf00203755

Google Scholar

[5] R. Singh and J. Tembrock, Effectively controlled reverse osmosis systems, September (1999) 57-66.

Google Scholar

[6] Z.F. Cui, and H.S. Muralidhara Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Elsevier. 2010.

Google Scholar

[7] J.D. Seader, and E.J. Henley, Separation Process Principles. Second Edition, John Wiley & Sons, Inc. 2006.

Google Scholar

[8] T.D. Naylor, Polymer Membranes-Materials, Structures And Separation Performance. Vol.8, No.5, Rapra Technology Ltd. 1995.

Google Scholar

[9] R.W. Baker, Membrane Technology and Applications. Second Edition, John Wiley & Sons, Inc. 2004.

Google Scholar

[10] E. Drioli, and L. Giorno, Membrane Operations: Innovative Separations And Transformations. Wiley-VCH. 2009.

DOI: 10.1002/9783527626779

Google Scholar

[11] S. Ramakrishna, Z. Ma, T. Matsuura, Polymer Membrane In Biotechnology: Preparation, Fictionalization And Application. London: Imperal College Press. 2011.

Google Scholar

[12] K. Scott, and R. Hughes, Industrial Membrane Separation Technology. Chapman & Hall. 1996.

Google Scholar

[13] M.F.A. Goosen, S.S. Sablani, H. Al-Hinai, S. Al-Obeidani, R., Al-Belushi, D. Jackson, Fouling of reverse osmosis and ultrafiltration membranes: a critical review, Sep. Sci. Technol. 39 (2004) 2261–2298.

DOI: 10.1081/ss-120039343

Google Scholar

[14] A.D. Marshall, P.A. Munro, G. Tragardh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity-a literature-review, Desalination 91 (1993) 65–108.

DOI: 10.1016/0011-9164(93)80047-q

Google Scholar

[15] B.K. Chaturvedi, A.K. Chosh, Ramachandhan, M.K. Trivedi, M.S. Hanra, B.M. Misra, Preparation, Characterization And Performance Of Polyethersulfone Ultrafiltration Membranes, Desalination. 2001. 133: 31-40.

DOI: 10.1016/s0011-9164(01)00080-7

Google Scholar

[16] W.F. Jones, R.L. Valentine, V.G.J. Rodgers, Removal of suspended clay from water using transmembrane pressure pulsed microfiltration, J. Membr. Sci. 157 (1999) 199–210.

DOI: 10.1016/s0376-7388(98)00376-7

Google Scholar

[17] J. Pieracci, J.V. Crivello, G. Belfort, Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, J. Membr. Sci. 156 (1999) 223–240.

DOI: 10.1016/s0376-7388(98)00347-0

Google Scholar

[18] R. Guan, H.D. Cuihua, "Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J. Membr. Sci. 277, 148-156.

Google Scholar

[19] Q. She, C.Y. Tang, Y.-N. Wang, Z. Zhang, The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination 249 (3), (2009).1079–1087.

DOI: 10.1016/j.desal.2009.05.015

Google Scholar

[20] H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H.H. Ngo, Fouling of ultrafiltration membrane by effluent organic matter: a detailed characterization using different organic fractions in wastewater. J. Membr. Sci. 278 (1–2), (2006) 232–238.

DOI: 10.1016/j.memsci.2005.11.006

Google Scholar

[21] J. Mueller, R.H. Davis, Protein fouling of surface-modified polymeric microfiltration membranes. J. Membr. Sci. 116 (1), (1996) 47–60.

DOI: 10.1016/0376-7388(96)00017-8

Google Scholar

[22] I.H. Huisman, P. Pradanos, The effect of protein and protein membrane interactions on membrane fouling in ultrafiltration. J, membrane science 179,79-90(2000).

DOI: 10.1016/s0376-7388(00)00501-9

Google Scholar

[23] J.A. Koehler, M. Ulbricht, G. Belfort, Intermolecular forces between proteins and polymer films with relevance to filtration, Langmuir 13 (1997) 4162–4171.

DOI: 10.1021/la970010m

Google Scholar

[24] P. Mikulasek, Methods to reduce concentration polarization and fouling in membrane filtration, Collect. Czechoslovak Chem. Commun. 59 (1994) 737–755.

DOI: 10.1135/cccc19940737

Google Scholar

[25] J. Pieraccia, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 202 (2002) 1–16.

DOI: 10.1016/s0376-7388(01)00624-x

Google Scholar

[26] M. Ulbricht, M. Ridel, U. Marx, Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules, J. Membr. Sci. 120 (1996) 239–259.

DOI: 10.1016/0376-7388(96)00148-2

Google Scholar

[27] A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and anti-fouling properties, J. Membr. Sci. 305 (2007) 299–312.

DOI: 10.1016/j.memsci.2007.08.030

Google Scholar

[28] S. Bequet, J.-C. Remigy, J.C. Rouch, J.-M. Espenan, M. Clifton, P. Aptel, From ultrafiltration to nanofiltration hollow fiber membranes: a continuous UV-photografting process, Desalination 144 (2002) 9–14.

DOI: 10.1016/s0011-9164(02)00281-3

Google Scholar

[29] Z.P. Zhao, J. Li, D.X. Zhang, C.X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma. I. Graft of acrylic acid in gas, J. Membr. Sci. 232 (2004) 1–8.

DOI: 10.1016/j.memsci.2003.11.009

Google Scholar

[30] C. Qiu, F. Xu, Q.T. Nguyen, Z. Ping, Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV induced grafting method, J. Membr. Sci. 255 (2005) 107–115.

DOI: 10.1016/j.memsci.2005.01.027

Google Scholar

[31] S.P. Nunes, M.L. Sforca, K.V. Peinemann, Dense hydrophilic composite membranes for ultrafiltration, J. Membr. Sci. 106 (1995) 49–56.

DOI: 10.1016/0376-7388(95)00076-o

Google Scholar

[32] A. Asatekin, A. Menniti, S. Kang, M. Elimelech, E. Morgenroth, A.M. Mayes, Antifouling nanofiltration membranes for membrane bioreactors from self assembling graft copolymers, J. Membr. Sci. 285 (2006) 81–89.

DOI: 10.1016/j.memsci.2006.07.042

Google Scholar

[33] A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 1 (1997) 108.

Google Scholar

[34] Z. Baolong, C. Baishun, S. Keyu, H. Shangjin, L. xiaodong, D. Zongjie, Y. Kelian, Preparation and characterization of nanocrystal grain TiO2 porous microsphere, Appl. Catal. B: Environ. 40 (2003) 253–258.

DOI: 10.1016/s0926-3373(02)00083-8

Google Scholar

[35] W. Xi, S.U. Geissen, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res. 35 (2001) 1256–1262.

DOI: 10.1016/s0043-1354(00)00378-x

Google Scholar

[36] A. Rahimpour, S.S. Madaeni, A.H. Taheri, Y. Mansourpanah, Coupling TiO2 Nanoparticles With UV Irradiation For Modification Polyethersulfone Ultrafiltration Membranes. Journal of Membrane Science. 2008. 313: 158-169.

DOI: 10.1016/j.memsci.2007.12.075

Google Scholar

[37] A. Fujishima, T.N. Rao, D.A. Tryk, Tiatnium dioxide photocatalysis. J. Photochem. Photobiol. C 1 (2000) 1-21.

Google Scholar

[38] S.H. Kim, S.Y. Kwak, B.H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci. 211 (2003) 157–165.

DOI: 10.1016/s0376-7388(02)00418-0

Google Scholar

[39] H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, M. Anpo, Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance, Nucl. Instrum. Methods Phys. Res. B 206 (2003) 898–901.

DOI: 10.1016/s0168-583x(03)00895-4

Google Scholar

[40] S.S. Madaeni, N. Ghaemi, Characterization of Self-Cleaning RO Membranes Coated With TiO2 Particles Under UV Irradiation, J. Membr. Sci.. 303 (2007) 221-233.

DOI: 10.1016/j.memsci.2007.07.017

Google Scholar