Characterisation of Fatigue Crack Growth and Fracture Behaviour of SS 316L(N) Base and Weld Materials

Article Preview

Abstract:

This paper summarizes the results of the studies on fracture mechanics characterisation of SS 316L(N) and its welds. The results presented include the fracture toughness and FCG properties of the base and weld materials at different temperatures. Influence of nitrogen content on the base material properties is discussed. Further, the effects of long-term ageing at different temperatures on the fracture and FCG behaviour of the welds are presented and discussed. The weld metal has been subjected to extended thermal ageing, and a detailed study has been undertaken to characterize the (i) FCG properties and (ii) quasistatic J-R curves for the indigenously developed SS 316(N) weld material at both ambient and service temperatures. The ageing conditions covered include the advanced ageing according to the RCC-MR design code, i.e, > 4000 h at 923 K and the low temperature ageing, i.e., 643-823 K the operating range for the SS 316L(N) components in PFBR. The results are discussed in detail in the light of microstructural changes taking place in the weld metal and their influence on the operating micromechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-459

Citation:

Online since:

September 2013

Export:

Price:

[1] G. Sasikala, Creep Deformation and fracture Behaviour of Type 316L(N) Stainless Steel and its Weld Metal, Ph.D. Thesis, University of Madras, (2001).

Google Scholar

[2] W.J. Mills , Fracture toughness of type 304 and 316 stainless steels and their welds, Int Mater Rev. 42(2) (1997) 45.

DOI: 10.1179/imr.1997.42.2.45

Google Scholar

[3] B.T. Timofeev, G.P. Karzov, A.A. Blumin, V.V. Anikovsky, Fracture toughness of austenitic welded joints, International Journal of Pressure Vessels and Piping. 76 (1999) 393–400.

DOI: 10.1016/s0308-0161(98)00124-0

Google Scholar

[4] A. Yakubtsov, A. Ariapour, D.D. Perovic. Effect of nitrogen on stacking fault energy of f. c. c. iron-based alloys, Acta Mater. 47 (1999) 1271-1279.

DOI: 10.1016/s1359-6454(98)00419-4

Google Scholar

[5] J. -O. Nilsson, The effect of slip behaviour on the low cycle fatigue behaviour of two austenitic stainless steels, Scripta Mater. 17 (1983) 593-596.

DOI: 10.1016/0036-9748(83)90383-6

Google Scholar

[6] M. Nani Babu, B. Shashank Dutt, S. Venugopal, G. Sasikala, Shaju K Albert, A. K. Bhaduri, T. Jayakumar, Fatigue crack growth behavior of 316LN stainless steel with different nitrogen contents, Procedia Engineering. 55 (2013) 716-721.

DOI: 10.1016/j.proeng.2013.03.320

Google Scholar

[7] M. Nani Babu, B Shashank Dutt, S Venugopal, G Sasikala, A. K. Bhaduri, T. Jayakumar and Baldev Raj, On the anomalous temperature dependency of fatigue crack growth of SS 316 (N) weld near threshold, Materials Science and Engineering. A 527 (2010).

DOI: 10.1016/j.msea.2010.04.075

Google Scholar

[8] V. Calonne, A.F. Gourgues, A. Pineau, Fatigue crack propagation in cast duplex stainless steels: thermal ageing and microstructural effects, Fatigue Fract. Engg. Mater. Struct. 27 (2004) 31-43.

DOI: 10.1111/j.1460-2695.2004.00717.x

Google Scholar

[9] T.J. Marrow, J.E. King, Fatigue crack propagation mechanisms in a thermally aged duplex stainless steel, Mater. Sci. Engg. A 183 (1994) 91-101.

DOI: 10.1016/0142-1123(96)82779-4

Google Scholar

[10] Sharvan Kumar, William A. Curtin, Crack interaction with microstructure, Materials Today. 10 (2007) 34-44.

Google Scholar

[11] S. Suresh, Fatigue of Materials, Cambridge University Press, (1991).

Google Scholar

[12] K.V. Sudhakar, Asim Bag, E.S. Dwarakadasa, K.K. Ray, Effect of corrosive medium on fatigue crack growth behaviour and fracture in high martensite dual phase steel, Bull. Mater. Sci. 22 (1999) 1029-1036.

DOI: 10.1007/bf02745616

Google Scholar

[13] M. Balbi, M. Avalos, A. El Bartali, I. Alvarez-Armas, Microcrack growth and fatigue behavior of a duplex stainless steel, Int. J. Fatigue. 31 (2009) 2006-(2013).

DOI: 10.1016/j.ijfatigue.2008.12.007

Google Scholar

[14] T.H. Kang, D.M. Li, Y.D. Lee, C.S. Lee, Alloying and aging effects on the fatigue crack growth of duplex stainless steels, Mater. Sci. Eng. A251 (1998) 192–199.

DOI: 10.1016/s0921-5093(98)00587-5

Google Scholar

[15] Byung Sup Rho, Hyun Uk Hong, Soo Woo Nam, The effect of δ-ferrite on fatigue cracks in 304L steels, Int. J. Fatigue. 22 (2000) 683-690.

DOI: 10.1016/s0142-1123(00)00043-8

Google Scholar

[16] G. Sasikala, S.K. Ray, Influence of ageing on the quasistatic fracture toughness of an SS 316(N) weld at ambient and elevated temperatures, Journal of Nuclear Materials 408 (2011) 45-53.

DOI: 10.1016/j.jnucmat.2010.11.001

Google Scholar

[17] Seiichi Kawaguchi, Naruo Sakamoto, Genta Takano, Fukuhisa Matsuda, Yasushi Kikuchi, L'ubos Mra´z Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging, Nucl. Eng. Des. 174 (1997) 273-285.

DOI: 10.1016/s0029-5493(97)00126-x

Google Scholar

[18] Jin Sik Cheon, In Sup Kim Evaluation of thermal aging embrittlement in CF8 duplex stainless steel by small punch test, J. Nucl. Mater. 278 (2000) 96-103.

DOI: 10.1016/s0022-3115(99)00213-5

Google Scholar

[19] O.K. Chopra, H.M. Chung, Aging of cast duplex stainless steels in LWR systems, Nucl. Eng. Des. 89 (1985) 305-318.

DOI: 10.1016/0029-5493(85)90069-x

Google Scholar

[20] H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Pres. Ves. Pip. 50 (1992) 179-213.

DOI: 10.1016/0308-0161(92)90037-g

Google Scholar

[21] O.K. Chopra, W.J. Shack, Assessment of Thermal Embrittlement of Cast Stainless Steel, NUREG/CR-6177, U.S. Nuclear Regulatory Commission, Washington, DC, (1994).

Google Scholar

[22] S. Cicero, J. Setién, I. Gorrochategui, Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity, Nucl. Eng. Des. 239 (2009)16-22.

DOI: 10.1016/j.nucengdes.2008.09.009

Google Scholar

[23] B. Shashank Dutt, G. Sasikala, G. Shanthi, S. Venugopal, M. Nani Babu, Pradyumna Kumar Parida, A.K. Bhaduri, Mechanical Behaviour of SS 316 (N) Weld after Long Term Exposure to Service Temperatures, Procedia Engineering 10 (2011) 2725-2730.

DOI: 10.1016/j.proeng.2011.04.454

Google Scholar

[24] X.B. Ren, Z.L. Zhang, B. Nyhus, Effect of residual stresses on ductile crack growth resistance, Engineering Fracture Mechanics 77 (2010) 1325–1337.

DOI: 10.1016/j.engfracmech.2010.03.007

Google Scholar

[25] B.T. Timofeev, Y.K. Nikolaev, About the prediction and assessment of thermal embrittlement of Cr-Ni austenitic-ferritic weld metal and castings at the ageing temperatures 260-425 °C, Int. J. Pres. Ves. Pip. 76 (1999) 849-856.

DOI: 10.1016/s0308-0161(99)00055-1

Google Scholar