Long Term Monitoring of Timber Bridges - Assessment and Results

Article Preview

Abstract:

Timber bridges have been built for decades all around the world. The hygroscopic material behavior of wood leads to the change of the moisture content of the wood and the dimensions depending on the climate. Therefore in regular inspections following questions arise: what happens with the wood due to the climate changes Are there major changes of the moisture content Are there differences between the natural material axes or within the cross section of the structural members To answer these questions, traffic timber bridges with big cross sections are long term monitored within a research project. The results of the moisture contents measured and a comparison between the different measuring groups and positions are presented. The analyses confirm that the moisture content in the wood follows the climate changes delayed and with smaller amplitude against the calculated equilibrium moisture content. In first steps, a different behavior of the change of the moisture content could be determined over the cross section and along the span of the member.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

749-756

Citation:

Online since:

September 2013

Export:

Price:

[1] J. M. McMillen, Drying stresses in red oak. Forest Products Journal Vol. 5 (1955) 71-76.

Google Scholar

[2] T. Toratti, Moisture induced stresses, Presentation at Cost E55 meeting Trondheim (2009).

Google Scholar

[3] S. Svensson, T. Toratti, Mechanical response of wood perpendicular to grain when subjected to changes of humidity, Wood Science & Technology, Vol. 36 (2002) 145-156.

DOI: 10.1007/s00226-001-0130-4

Google Scholar

[4] S. Svensson, A. Martensson, Simulation of drying stresses in wood - I: Comparison between one and two dimensional models, Holz als Roh- und Werkstoff, Vol. 57 (1999) 129-136.

DOI: 10.1007/s001070050028

Google Scholar

[5] M. Häglund, Moisture content penetration in wood elements under varying boundary conditions Wood SciTechnol Vol. 41 (2005) 477–490.

DOI: 10.1007/s00226-007-0131-z

Google Scholar

[6] M. Häglund, S. Thelandersson, Consideration of moisture exposure of timber structures as an action, In Proceedings CIB-W18/38-11-2, (2005).

Google Scholar

[7] M. Häglund, Varying moisture content penetration in wood elements under varying boundary conditions, Wood Science & Technology, Vol. 41 (2007), 477-490.

DOI: 10.1007/s00226-007-0131-z

Google Scholar

[8] M. Häglund, Varying moisture content penetration in wood elements under varying boundary conditions, Wood material science and engineering, Vol. 3 (2008), 38-45.

DOI: 10.1007/s00226-007-0131-z

Google Scholar

[9] T. Gereke, P. Niemz, Moisture-induced stresses in spruce cross-laminates. Engineering Structures, 32 (2010), 600-606.

DOI: 10.1016/j.engstruct.2009.11.006

Google Scholar

[10] T. Gereke, Moisture-Induced Stresses In Cross-Laminated Wood Panels, doctoral thesis, ETH Zurich, Switzerland, (2009).

Google Scholar

[11] V. Angst, K.A., Malo, The effect of climate variations on glulam-an experimental study, European Journal of Wood and Wood Products, 70/ 5(2012), 603-613.

DOI: 10.1007/s00107-012-0594-y

Google Scholar

[12] V. Angst-Nicollier, Moisture Induced Stresses in Glulam. PhD Thesis, Norwegian University of Science and Technology, Trondheim, (2012).

Google Scholar

[13] T. Tannert, A. Müller, M. Vogel, Structural health monitoring of timber bridges, International Conference on Timber Bridges (ITCB, 2010).

Google Scholar

[14] M. Frese, Wechselwirkung zwischen der Anisotropie der Schwind- und Quellmasse sowie der Holzfeuchte-Änderung in der Ebene von gekrümmtem Brettschichtholz, European Journal Wood and Product (2011) 69, 259-367.

DOI: 10.1007/s00107-010-0443-9

Google Scholar

[15] S. Winter, M. Sieder, A. Gamper, P. Dietsch, M. Merk, Gebäudeklima - Langzeitmessung zur Bestimmung der Auswirkungen auf Feuchtegradienten in Holzbauteilen, Research report, Technical University Munich, Germany, (2012).

DOI: 10.1002/bate.201300010

Google Scholar

[16] F.H. Neuhaus, Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit, Technical Reports, Ruhr-University of Bochum, Germany, (1981).

Google Scholar

[17] P. Niemz, Physik des Holzes und der Holzwerkstoffe, DRW-Verlag, Leinfelden-Echterdingen, Germany, (1993).

DOI: 10.3139/9783446445468.fm

Google Scholar

[18] F. Scharmacher, A. Müller, Erfahrungen und Konsequenzen aus der Langzeitüberwachung von Holzbrücken, Bridge Symposium – Grünbrücken aus Holz, Stuttgart, Germany (2012).

Google Scholar

[19] R. Keylwerth, D. Noack, Die Kammertrocknung von Schnittholz, Holz als Roh- und Werkstoff, 22 (1964), 29-36.

DOI: 10.1007/bf02627726

Google Scholar

[20] B. Franke, A. Müller, M. Vogel, T. Tannert, Langzeitmessung der Holzfeuchte und Dimensionsänderung an Brücken aus blockverleimten Brettschichtholz, Research report, Bern University of Applied Sciences, Switzerland, (2012).

Google Scholar