Sucrose Transporter Gene AtSUC4 Regulates Sucrose Distribution and Metabolism in Response to Salt Stress in Arabidopsis thaliana

Article Preview

Abstract:

Sporadic reports indicated that salt stress induced the expression of sucrose transporter genes, and sucrose transporters (SUCs or SUTs) as the important carriers are responsible for the loading, unloading and distribution of sucrose, but the study that SUCs are involved in sucrose distribution and metabolism under salt stress at the whole-plant level has not been reported to date. AtSUC4, as the unique member of low affinity/high capacity SUT4-clade in Arabidopsis thaliana, may play an important role in plant stress tolerance. Here, through analyzing two homozygous mutation lines of AtSUC4 (Atsuc4-1 and Atsuc4-2), we found salt stress induced higher sucrose, fructose and glucose content in shoots and lower sucrose, fructose and glucose content in roots of these mutants compared with the wild-type (WT), resulting in an imbalance of sucrose distribution and fructose and glucose accumulation changes of sucrose metabolitesat the whole-plant level. Our results indicated that AtSUC4 is involved in salt stress tolerance by the regulation of sucrose distribution and metabolism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

217-221

Citation:

Online since:

August 2013

Export:

Price:

[1] R. Munns: New Phytol. Vol. 167 (2005), p.645

Google Scholar

[2] J. Gorham, L.Y. Hughes and R.G. Wynjones: Physiol. Plant. Vol. 53 (1981), p.27

Google Scholar

[3] S.M. Yu: Plant Physiol. Vol. 121 (1999), p.687

Google Scholar

[4] A.K. Gupta and N. Kaur: Biosci J. Vol. 30 (2005), p.761

Google Scholar

[5] C. Kühn and C.P. Grof: Curr. Opin. Plant Biol. Vol. 13 (2010), p.288

Google Scholar

[6] N. Aoki, G.N. Scofield, X.D. Wang, C.E. Offler, J.W. Patrick and R.T. Furbank: Plant Physiol. Vol. 141 (2006), p.1255

Google Scholar

[7] L. Barker, C. Kühn, A. Weise, A. Schulz, C. Gebhardt, B. Hirner, H. Hellmann, W. Schulze, J.M. Ward and W.B. Frommer: Plant Cell, Vol. 12 (2000), p.1153

DOI: 10.1105/tpc.12.7.1153

Google Scholar

[8] A. Weise, L. Barker, C. Kühn, S. Lalonde, H. Buschmann, W.B. Frommer and J.M. Ward: Plant Cell, Vol.12 (2000), p.1345

Google Scholar

[9] A. Endler, S. Meyer, S. Schelbert, T. Schneider, W. Weschke, S.W. Peters, F. Keller, S. Baginsky, E. Martinoia and U.G. Schmidt: Plant Physiol. Vol. 141 (2006), p.196

DOI: 10.1104/pp.106.079533

Google Scholar

[10] A. Schulz, D. Beyhl, I. Marten, A. Wormit, E. Neuhaus, G. Poschet, M. Büttner, S. Schneider, N. Sauer and R. Hedrich: Plant J. Vol. 68 (2011), p.129

DOI: 10.1111/j.1365-313x.2011.04672.x

Google Scholar

[11] O. Ibraheem, G. Dealtry, S. Roux and G. Bradley: Plant Omics J. Vol. 4(2011), p.68

Google Scholar

[12] N. Noiraud, S. Delrot and R. Lemoine: Plant Physiol. Vol. 122 (2000), p.1447

Google Scholar

[13] J. Doidy, E. Grace, C. Kühn, F. Simon-Plas, L. Casieri and D. Wipf: Trends Plant Sci. Vol. 17 (2012), p.413

DOI: 10.1016/j.tplants.2012.03.009

Google Scholar

[14] S.W. Lu, T.L. Li and J. Jiang: Africa J. Biotechnology. Vol. 9 (2010), p.842

Google Scholar