Study on Surface Modification of Aluminum Alloys by Silicate-Based Hybrid Coating

Article Preview

Abstract:

Silicate-based hybrid coatings were deposited on aluminum alloy substrates following the methodology of sol-gel procedure and are applying to survey the corrosion protective behavior. The results show that the optimal intact and uniform film can be obtained by preparing with Si:Al mole ratio 48:1 and tempering at 140°C. It was noted that this modified hybrid coating reduced the corrosion current density from 1.532×10-4A/cm2 (bare substrate) to 2.782×10-8 A/cm2 in 3.5 wt. % NaCl solution. The coating represents an excellent stability, especially at higher temperature, therefore could offer a significant protection to 2024 aluminum alloy substrates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1792-1798

Citation:

Online since:

January 2013

Authors:

Export:

Price:

[1] X. F. Yang, D. E. Tallman, V. J. Gelling, G. P. Bierwagen, L. S. Kasten, J. Berg, Use of A Sol-gel Conversion Coating for Aluminum Corrosion Protection, Surf. Coat. Technol.140 (2001) 44-50.

DOI: 10.1016/s0257-8972(01)01002-7

Google Scholar

[2] N.N. Voevodin, J.W. Kurdziel, R. Mantz, Corrosion Protection for Aerospace Aluminum Alloys by Modified Self-assembled Nanophase Particle (MSNAP) sol-gel, Surf. Coat. Technol. 201 (2006) 1080–1084.

DOI: 10.1016/j.surfcoat.2006.01.028

Google Scholar

[3] M. Mennig, C. Schelle, A. Duran, J.J. Damborenea, M.Guglielmi, G. Brusatin, Investigation of Glass-Like Sol-Gel Coatings for Corrosion Protection of Stainless Steel Against Liquid and Gaseous Attack, J. Sol-Gel Sci. Technol. 13 (1998)717-722.

DOI: 10.1023/a:1008601224013

Google Scholar

[4] L. Aries, L. Alberich, J. Roy, J. Sotoul, Conversion Coating on Stainless Steel as A Support for Electrochemically Induced Alumina Deposit, Electrochim. Acta. 41 (1996) 2799-2803.

DOI: 10.1016/0013-4686(96)00091-6

Google Scholar

[5] C.J. Brinker and C.W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, CA, 1990.

DOI: 10.1080/10426919308934843

Google Scholar

[6] M.S. Donley, R.A. Mantz, A.N. Khramov, V.N. Balbyshev, L.S. Kasten, D.J. Gaspar, The Self-assembled Nanophase Particle (SNAP) Process: A Nanoscience Approach to Coatings, Prog. Org. Coat. 47 (2003) 401–415.

DOI: 10.1016/j.porgcoat.2003.08.017

Google Scholar

[7] N.N. Voevodin, V.N. Balbyshev, M.S. Donley, Investigation of Corrosion Protection Performance of Sol–gel Coatings on AA2024-T3, Prog. Org. Coat. 52 (2005) 28–33.

DOI: 10.1016/j.porgcoat.2004.05.006

Google Scholar

[8] S. Chaudhari, P.P. Patil, Corrosion Protective Poly(o-ethoxyaniline) Coatings on Copper, Electrochim. Acta. 53 (2007) 927–933.

DOI: 10.1016/j.electacta.2007.08.002

Google Scholar

[9] J. Creus, H. Mazille, H. Idrissi, Porosity Evaluation of Protective Coatings onto Steel Through Electrochemical Techniques, Surf. Coat. Technol. 130 (2000) 224–232.

DOI: 10.1016/s0257-8972(99)00659-3

Google Scholar

[10] Z.F Zhu, H.Liu, H.G Sun, D. Yang, PEG-directed Hydrothermal Synthesis of Multilayered Alumina Microfibers with Mesoporous Structures, Microporous Mesoporous Mater. 123 (2009) 39-44.

DOI: 10.1016/j.micromeso.2009.03.028

Google Scholar

[11] S. Musić, Đ. Dragčević, S. Popović, Hydrothermal Crystallization of Boehmite from Freshly Precipitated Aluminium Hydroxide, Mater. Lett. 40 (1999) 269-274.

DOI: 10.1016/s0167-577x(99)00088-9

Google Scholar

[12] J. Yang, Yy Zhao, Ray L. Frost, Surface Analysis, TEM, Dynamic and Controlled Rate Thermal Analysis, and Infrared Emission Spectroscopy of Gallium Doped Boehmite Nanofibres and Nanosheets, Appl. Surf. Sci. 255 (2009) 7925-7936.

DOI: 10.1016/j.apsusc.2009.04.171

Google Scholar

[13] C.B Ma, F.H Gao, Z. Zhang, J.Q. Zhang, Electrodeposition of Amorphous Ni-P Coatings onto Nd-Fe-B Permanent Magnet Substrates, Appl. Surf. Sci. 253 (2006) 2251–2256.

DOI: 10.1016/j.apsusc.2006.04.037

Google Scholar

[14] Q. Li, X.K Yang, L. Zhang, J.P. Wang, B.Chen, Corrosion Resistance and Mechanical Properties of Pulse Electrodeposited Ni-TiO2 Composite Coating for Sintered NdFeB Magnet, J. Alloys Compd. 482 (2009) 339–344.

DOI: 10.1016/j.jallcom.2009.04.014

Google Scholar