Preparation and Photocatalytic Property of TiO2/NiFe2O4 Composite Photocatalysts

Article Preview

Abstract:

The TiO2/NiFe2O4 (TN) composite nanoparticles with different mass ratios of NiFe2O4 to TiO2 were prepared via sol-gel method. X-ray diffraction was used to characterize the phase structure of TN. The results indicated that adulterating a smidgen of NiFe2O4 into the TiO2 (about 0.1%) can promote the phase transformation of TiO2, however, when the doping amount of NiFe2O4 surpasses 1%, the introduction of NiFe2O4 can inhibit the growth of TiO2 crystal grain and reduce the size of TiO2 crystal grain. The degradation experiment of methyl orange solution under UV illumination (253.7 nm) showed that the content of NiFe2O4 in the TN was higher, the photocatalytic activity of TN was worse, and the 0.1% TiO2/NiFe2O4 calcined at 400 °C presented the best photocatalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

775-779

Citation:

Online since:

May 2012

Export:

Price:

[1] O. Carp, C. L. Huisma and A. Reller: Prog. Solid State Chem. 33 (2004) 33-177

Google Scholar

[2] X. Q. Chen, F. B. Li, X. J. Li and G. B. Gu: Soil and Environmental Sciences. 10 (2001) 30-32, in Chinese

Google Scholar

[3] S. C. Peng, J. J. Xie and C. S. Qing: journal of the Chinese Ceramic Society. 34 (2006) 1208-1212, in Chinese

Google Scholar

[4] K. Shimizu, H. Murayama, A. Nagai, A. Shimada, T. Hatamachi and T, Kodama, et al.: Appl. Catal. B-Environ. 55 (2005) 141-148

Google Scholar

[5] L. J. Wang and D. Y. Zhang: Inorganic Chemicals Industry. 42 (2010) 15 -17, in Chinese

Google Scholar

[6] D. Beydoun, R. Ameal, G. Low and S. McEvoy: J. Phys. Chem. B. 104 (2000) 4387-4396

Google Scholar

[7] Y. Gao, B. H. Chen, H. L. Li and Y. X. Ma: Mater. Chem. Phys. 80 (2003) 348-355

Google Scholar

[8] L. Y. Chen, Y. M. Shen and J. F. Bai: Mater. Lett. 63 (2009) 1099-1101

Google Scholar

[9] S. H. Xu, W. F. ShangGuan, J. Yuan, M. X. Chen and J. W. Shi: Chin. J. Chem. Eng. 15 (2007) 190-195

Google Scholar

[10] F. Chen, Y. D. Xie, J. C. Zhao and G. X. Lu: Chemosphere. 44 (2001) 1159-1168

Google Scholar

[11] S. H. Xu, D. L. Feng, D. X. Li and W. F. ShangGuan: Chin. J. Chem. 26 (2008) 842-846

Google Scholar

[12] H. Zhao, W.Y. Fu, H. B. Yang, Y. Xu, W. Y. Zhao, Y. Y. Zhang and H. Chen, et al.: Appl. Surf. Sci. 257 (2001) 8778-8783

Google Scholar

[13] A. Nobile and M. W. Davis: J. Catal. 116 (1989) 383-398

Google Scholar

[14] X. Y. Li, J. Y. Wang, X. Y. Wang, D. Su, X. J. Han and Y. C. Du: Chem. J. Chin. Univ.-Chin. 31 (2010) 662-666

Google Scholar

[15] S. Balaji, R. K. Selvan, L. J. Berchmans, S. Angappan, K. Subramanian, and C. O. Augustin: Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 119 (2005) 119-124

DOI: 10.1016/j.mseb.2005.01.021

Google Scholar

[16] E. Q. Wang, S. H. Xu, Y. Li and D. X. Li: Journal of Wuhan University of Technology. 33 (2011) 120-124, in Chinese

Google Scholar