Performance Comparison of Microchannel Heat Sink Using Boron-Based Ceramic Materials

Article Preview

Abstract:

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-88

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] Z. Qian, Y. Li, Z. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, Energy Convers. Manag. 126 (2016) 622–631. https://doi.org/10.1016/j.enconman.2016.08.063.

DOI: 10.1016/j.enconman.2016.08.063

Google Scholar

[2] M.M. Sarafraz, V. Nikkhah, M. Nakhjavani, A. Arya, Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel, Appl. Therm. Eng. 123 (2017) 29–39. https://doi.org/10.1016/j.applthermaleng.2017.05.056.

DOI: 10.1016/j.applthermaleng.2017.05.056

Google Scholar

[3] A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, Int. J. Heat Mass Transf. 43 (2000) 399–415. https://doi.org/10.1016/S0017-9310(99)00151-9.

DOI: 10.1016/s0017-9310(99)00151-9

Google Scholar

[4] D.B. Tuckerman, R.F.W. Pease, D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2 (1981) 126–129. https://doi.org/10.1109/EDL.1981.25367.

DOI: 10.1109/edl.1981.25367

Google Scholar

[5] P. Gunnasegaran, H.A. Mohammed, N.H. Shuaib, R. Saidur, The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes, Int. Commun. Heat Mass Transf. 37 (2010) 1078–1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014.

DOI: 10.1016/j.icheatmasstransfer.2010.06.014

Google Scholar

[6] D.B. Monteiro, P.E.B. de Mello, Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations, Energy. 45 (2012) 489–496. https://doi.org/10.1016/j.energy.2012.02.012.

DOI: 10.1016/j.energy.2012.02.012

Google Scholar

[7] X.J. Shi, S. Li, B. Agnew, Z.H. Zheng, Effects of geometrical parameters and Reynolds number on the heat transfer and flow characteristics of rectangular micro-channel using nano-fluid as working fluid, Therm. Sci. Eng. Prog. 15 (2020). https://doi.org/10.1016/j.tsep.2019.100456.

DOI: 10.1016/j.tsep.2019.100456

Google Scholar

[8] S.P. Jang, S.U.S. Choi, Cooling performance of a microchannel heat sink with nanofluids, Appl. Therm. Eng. 26 (2006) 2457–2463. https://doi.org/10.1016/j.applthermaleng.2006.02.036.

DOI: 10.1016/j.applthermaleng.2006.02.036

Google Scholar

[9] M. Zadhoush, A. Ahmadi Nadooshan, M. Afrand, H. Ghafori, Constructal optimization of longitudinal and latitudinal rectangular fins used for cooling a plate under free convection by the intersection of asymptotes method, Int. J. Heat Mass Transf. 112 (2017) 441–453. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.108.

DOI: 10.1016/j.ijheatmasstransfer.2017.04.108

Google Scholar

[10] R. Karvinen, T. Karvinen, Optimum geometry of fixed volume plate fin for maximizing heat transfer, Int. J. Heat Mass Transf. 53 (2010) 5380–5385. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.018.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.018

Google Scholar

[11] R. Karvinen, T. Karvinen, Optimum geometry of plate fins, J. Heat Transfer. 134 (2012). https://doi.org/10.1115/1.4006163.

DOI: 10.1115/1.4006163

Google Scholar

[12] R.. Shah, EXTENDED SURFACE HEAT TRANSFER, A-to-Z Guid. to Thermodyn. Heat Mass Transf. Fluids Eng. e (2006) 1105. https://doi.org/10.1615/AtoZ.e.EXTSURHEATRA.

Google Scholar

[13] I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink: The effect of channel design, Int. J. Heat Mass Transf. 107 (2017) 21–44. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.031.

DOI: 10.1016/j.ijheatmasstransfer.2016.11.031

Google Scholar

[14] G.D. Xia, J. Jiang, J. Wang, Y.L. Zhai, D.D. Ma, Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks, Int. J. Heat Mass Transf. 80 (2015) 439–447. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.095.

DOI: 10.1016/j.ijheatmasstransfer.2014.08.095

Google Scholar

[15] H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink, Int. Commun. Heat Mass Transf. 38 (2011) 474–480. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.031.

DOI: 10.1016/j.icheatmasstransfer.2010.12.031

Google Scholar

[16] A. Husain, K.Y. Kim, Shape optimization of micro-channel heat sink for micro-electronic cooling, in: IEEE Trans. Components Packag. Technol., 2008: p.322–330. https://doi.org/10.1109/TCAPT.2008.916791.

DOI: 10.1109/tcapt.2008.916791

Google Scholar

[17] L. Lin, Y.Y. Chen, X.X. Zhang, X.D. Wang, Optimization of geometry and flow rate distribution for double-layer microchannel heat sink, Int. J. Therm. Sci. 78 (2014) 158–168. https://doi.org/10.1016/j.ijthermalsci.2013.12.009.

DOI: 10.1016/j.ijthermalsci.2013.12.009

Google Scholar

[18] S.H. Chong, K.T. Ooi, T.N. Wong, Optimisation of single and double layer counter flow microchannel heat sinks, Appl. Therm. Eng. 22 (2002) 1569–1585. https://doi.org/10.1016/S1359-4311(02)00083-2.

DOI: 10.1016/s1359-4311(02)00083-2

Google Scholar

[19] A. Sakanova, S. Yin, J. Zhao, J.M. Wu, K.C. Leong, Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling, Appl. Therm. Eng. 65 (2014) 124–134. https://doi.org/10.1016/j.applthermaleng.2014.01.005.

DOI: 10.1016/j.applthermaleng.2014.01.005

Google Scholar

[20] G. Xie, Z. Chen, B. Sunden, W. Zhang, Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks, Numer. Heat Transf. Part A Appl. 63 (2013) 201–225. https://doi.org/10.1080/10407782.2013.730445.

DOI: 10.1080/10407782.2013.730445

Google Scholar

[21] K. Jeevan, I.A. Azid, K.N. Seetharamu, Optimization of double layer counter flow (DLCF) micro-channel heat sink used for cooling chips directly, in: Proc. 6th Electron. Packag. Technol. Conf. EPTC 2004, 2004: p.553–558. https://doi.org/10.1109/eptc.2004.1396669.

DOI: 10.1109/eptc.2004.1396669

Google Scholar

[22] K.C. Wong, M.L. Ang, Thermal hydraulic performance of a double-layer microchannel heat sink with channel contraction, Int. Commun. Heat Mass Transf. 81 (2017) 269–275. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.013.

DOI: 10.1016/j.icheatmasstransfer.2016.09.013

Google Scholar

[23] Y. Hadad, B. Ramakrishnan, R. Pejman, S. Rangarajan, P.R. Chiarot, A. Pattamatta, B. Sammakia, Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions, Appl. Therm. Eng. (2019) 720–737. https://doi.org/10.1016/j.applthermaleng.2018.12.128.

DOI: 10.1016/j.applthermaleng.2018.12.128

Google Scholar

[24] P. Nitiapiruk, O. Mahian, A.S. Dalkilic, S. Wongwises, Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models, Int. Commun. Heat Mass Transf. 47 (2013) 98–104. https://doi.org/10.1016/j.icheatmasstransfer.2013.07.001.

DOI: 10.1016/j.icheatmasstransfer.2013.07.001

Google Scholar

[25] T.H. Tsai, R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks, Int. J. Heat Fluid Flow. 28 (2007) 1013–1026. https://doi.org/10.1016/j.ijheatfluidflow.2007.01.007.

DOI: 10.1016/j.ijheatfluidflow.2007.01.007

Google Scholar

[26] E.M. Tokit, H.A. Mohammed, M.Z. Yusoff, Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids, Int. Commun. Heat Mass Transf. 39 (2012) 1595–1604. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.013.

DOI: 10.1016/j.icheatmasstransfer.2012.10.013

Google Scholar

[27] A.A. Awais, M.H. Kim, Experimental and numerical study on the performance of a minichannel heat sink with different header geometries using nanofluids, Appl. Therm. Eng. 171 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115125.

DOI: 10.1016/j.applthermaleng.2020.115125

Google Scholar

[28] A. Muhammad, D. Selvakumar, J. Wu, Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink, Int. J. Heat Mass Transf. 150 (2020) 119265. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119265.

DOI: 10.1016/j.ijheatmasstransfer.2019.119265

Google Scholar

[29] A. Muhammad, D. Selvakumar, A. Iranzo, Q. Sultan, J. Wu, Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09318-2.

DOI: 10.1007/s10973-020-09318-2

Google Scholar

[30] S.-W. Kang, L.J. Yang, C.-S. Yu, J.-S. Chen, Performance test and analysis of silicon-based microchannel heat sink, in: R.J. Hwu, K. Wu (Eds.), Terahertz and Gigahertz Photonics, SPIE, 1999: p.259. https://doi.org/10.1117/12.370172.

DOI: 10.1117/12.370172

Google Scholar

[31] V.V. Kuznetsov, A.S. Shamirzaev, Flow Boiling Heat Transfer of Refrigerant R-134a in Copper Microchannel Heat Sink, in: Heat Transf. Eng., Taylor and Francis Ltd., 2016: p.1105–1113. https://doi.org/10.1080/01457632.2015.1111103.

DOI: 10.1080/01457632.2015.1111103

Google Scholar

[32] T. Dang, N. Tran, J.T. Teng, Numerical and experimental investigations on heat transfer phenomena of an aluminium microchannel heat sink, Appl. Mech. Mater. 145 (2012) 129–133. https://doi.org/10.4028/www.scientific.net/AMM.145.129.

DOI: 10.4028/www.scientific.net/amm.145.129

Google Scholar

[33] A. Zadra, G. Robert, Dream recall frequency: Impact of prospective measures and motivational factors, Conscious. Cogn. 21 (2012) 1695–1702. https://doi.org/10.1016/j.concog.2012.08.011.

DOI: 10.1016/j.concog.2012.08.011

Google Scholar

[34] A. Traverso, A.F. Massardo, R. Scarpellini, Externally Fired micro-Gas Turbine: Modelling and experimental performance, Appl. Therm. Eng. 26 (2006) 1935–1941. https://doi.org/10.1016/j.applthermaleng.2006.01.013.

DOI: 10.1016/j.applthermaleng.2006.01.013

Google Scholar

[35] A. Sabahi Namini, A. Motallebzadeh, B. Nayebi, M. Shahedi Asl, M. Azadbeh, Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt.% TiB2 composites, Mater. Chem. Phys. 223 (2019) 789–796. https://doi.org/10.1016/j.matchemphys.2018.11.057.

DOI: 10.1016/j.matchemphys.2018.11.057

Google Scholar

[36] K.A. Al-attab, Z.A. Zainal, Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems, Renew. Energy. 35 (2010) 913–920. https://doi.org/10.1016/j.renene.2009.11.038.

DOI: 10.1016/j.renene.2009.11.038

Google Scholar

[37] E. Zapata-Solvas, D.D. Jayaseelan, H.T. Lin, P. Brown, W.E. Lee, Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 33 (2013) 1373–1386. https://doi.org/10.1016/j.jeurceramsoc.2012.12.009.

DOI: 10.1016/j.jeurceramsoc.2012.12.009

Google Scholar

[38] F. Monteverde, Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd. 428 (2007) 197–205. https://doi.org/10.1016/j.jallcom.2006.01.107.

DOI: 10.1016/j.jallcom.2006.01.107

Google Scholar

[39] R. Königshofer, S. Fürnsinn, P. Steinkellner, W. Lengauer, R. Haas, K. Rabitsch, M. Scheerer, Solid-state properties of hot-pressed TiB2 ceramics, in: Int. J. Refract. Met. Hard Mater., Elsevier, 2005: p.350–357. https://doi.org/10.1016/j.ijrmhm.2005.05.006.

DOI: 10.1016/j.ijrmhm.2005.05.006

Google Scholar

[40] F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr, M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceram. Int. 45 (2019) 15892–15897. https://doi.org/10.1016/j.ceramint.2019.05.095.

DOI: 10.1016/j.ceramint.2019.05.095

Google Scholar

[41] T. Ai, F. Wang, X. Feng, M. Ruan, Microstructural and mechanical properties of dual Ti3AlC 2-Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing, Ceram. Int. 40 (2014) 9947–9953. https://doi.org/10.1016/j.ceramint.2014.02.092.

DOI: 10.1016/j.ceramint.2014.02.092

Google Scholar

[42] M. Vajdi, F. Sadegh Moghanlou, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Thermal diffusivity and microstructure of spark plasma sintered TiB 2 [sbnd]SiC[sbnd]Ti composite, Ceram. Int. 45 (2019) 8333–8344. https://doi.org/10.1016/j.ceramint.2019.01.141.

DOI: 10.1016/j.ceramint.2019.01.141

Google Scholar

[43] Z. Saleem, H. Rennebaum, F. Pudel, E. Grimm, Treating bast fibres with pectinase improves mechanical characteristics of reinforced thermoplastic composites, Compos. Sci. Technol. 68 (2008) 471–476. https://doi.org/10.1016/j.compscitech.2007.06.005.

DOI: 10.1016/j.compscitech.2007.06.005

Google Scholar

[44] R.J. Kee, B.B. Almand, J.M. Blasi, B.L. Rosen, M. Hartmann, N.P. Sullivan, H. Zhu, A.R. Manerbino, S. Menzer, W.G. Coors, J.L. Martin, The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger, Appl. Therm. Eng. 31 (2011) 2004–2012. https://doi.org/10.1016/j.applthermaleng.2011.03.009.

DOI: 10.1016/j.applthermaleng.2011.03.009

Google Scholar

[45] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, F.Z. Pishgar, M. Shokouhimehr, M. Shahedi Asl, The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool, Ceram. Int. 45 (2019) 22196–22202. https://doi.org/10.1016/j.ceramint.2019.07.241.

DOI: 10.1016/j.ceramint.2019.07.241

Google Scholar

[46] M. Mallik, A.J. Kailath, K.K. Ray, R. Mitra, Electrical and thermophysical properties of ZrB 2 and HfB 2 based composites, J. Eur. Ceram. Soc. 32 (2012) 2545–2555. https://doi.org/10.1016/j.jeurceramsoc.2012.02.013.

DOI: 10.1016/j.jeurceramsoc.2012.02.013

Google Scholar

[47] J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, R.B. Dinwiddie, W.D. Porter, H. Wang, Thermophysical Properties of ZrB 2 and ZrB 2 –SiC Ceramics, J. Am. Ceram. Soc. 91 (2008) 1405–1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x.

DOI: 10.1111/j.1551-2916.2008.02268.x

Google Scholar

[48] S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc. 29 (2009) 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.

Google Scholar

[49] M. Khoeini, A. Nemati, M. Zakeri, M. Shahedi Asl, Pressureless sintering of ZrB 2 ceramics codoped with TiC and graphite, Int. J. Refract. Met. Hard Mater. 81 (2019) 189–195. https://doi.org/10.1016/j.ijrmhm.2019.02.026.

DOI: 10.1016/j.ijrmhm.2019.02.026

Google Scholar

[50] M. Shahedi Asl, Y. Azizian-Kalandaragh, Z. Ahmadi, A. Sabahi Namini, A. Motallebzadeh, Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers, Int. J. Refract. Met. Hard Mater. 83 (2019) 104989. https://doi.org/10.1016/j.ijrmhm.2019.104989.

DOI: 10.1016/j.ijrmhm.2019.104989

Google Scholar

[51] N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 8561–8566. https://doi.org/10.1016/j.ceramint.2019.12.086.

DOI: 10.1016/j.ceramint.2019.12.086

Google Scholar

[52] S. Nekahi, M. Vajdi, F. Sadegh Moghanlou, K. Vaferi, A. Motallebzadeh, M. Özen, U. Aydemir, J. Sha, M. Shahedi Asl, TiB2–SiC-based ceramics as alternative efficient micro heat exchangers, Ceram. Int. 45 (2019) 19060–19067. https://doi.org/10.1016/j.ceramint.2019.06.150.

DOI: 10.1016/j.ceramint.2019.06.150

Google Scholar

[53] M. Vajdi, F. Sadegh Moghanlou, E. Ranjbarpour Niari, M. Shahedi Asl, M. Shokouhimehr, Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach, Ceram. Int. 46 (2020) 1730–1735. https://doi.org/10.1016/j.ceramint.2019.09.146.

DOI: 10.1016/j.ceramint.2019.09.146

Google Scholar

[54] F. Sadegh, M. Vajdi, A. Motallebzadeh, J. Sha, Numerical analyses of heat transfer and thermal stress in a ZrB 2 gas turbine stator blade, Ceram. Int. 45 (2019) 17742–17750. https://doi.org/10.1016/j.ceramint.2019.05.344.

DOI: 10.1016/j.ceramint.2019.05.344

Google Scholar

[55] S. Nekahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, M. Shahedi Asl, M. Shokouhimehr, A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2, Ceram. Int. 45 (2019) 24060–24069. https://doi.org/10.1016/j.ceramint.2019.08.112.

DOI: 10.1016/j.ceramint.2019.08.112

Google Scholar

[56] S.A. Delbari, A. Sabahi Namini, M. Shahedi Asl, Hybrid Ti matrix composites with TiB2 and TiC compounds, Mater. Today Commun. 20 (2019) 100576. https://doi.org/10.1016/j.mtcomm.2019.100576.

DOI: 10.1016/j.mtcomm.2019.100576

Google Scholar

[57] P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, Optimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution, Adv. Ceram. Prog. 3 (2017) 16–18. https://doi.org/10.30501/ACP.2017.90753.

Google Scholar

[58] F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311. https://doi.org/10.1016/j.ceramint.2018.11.228.

DOI: 10.1016/j.ceramint.2018.11.228

Google Scholar

[59] L. Zhang, D.A. Pejaković, J. Marschall, M. Gasch, Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics, J. Am. Ceram. Soc. 94 (2011) 2562–2570. https://doi.org/10.1111/j.1551-2916.2011.04411.x.

DOI: 10.1111/j.1551-2916.2011.04411.x

Google Scholar

[60] J.W. Lawson, C.W. Bauschlicher, M.S. Daw, Ab Initio Computations of Electronic, Mechanical, and Thermal Properties of ZrB 2 and HfB 2, J. Am. Ceram. Soc. 94 (2011) 3494–3499. https://doi.org/10.1111/j.1551-2916.2011.04649.x.

DOI: 10.1111/j.1551-2916.2011.04649.x

Google Scholar

[61] E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, F. Guitierrez-Mora, Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N), in: J. Mater. Sci., Springer, 2004: p.5939–5949. https://doi.org/10.1023/B:JMSC.0000041690.06117.34.

DOI: 10.1023/b:jmsc.0000041690.06117.34

Google Scholar

[62] B.G. Carman, J.S. Kapat, L.C. Chow, L. An, Impact of a ceramic microchannel heat exchanger on a micro turbine, in: Am. Soc. Mech. Eng. Int. Gas Turbine Institute, Turbo Expo IGTI, American Society of Mechanical Engineers Digital Collection, 2002: p.1053–1060. https://doi.org/10.1115/GT2002-30544.

DOI: 10.1115/gt2002-30544

Google Scholar

[63] V. Nagarajan, Y. Chen, Q. Wang, T. Ma, Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger, Appl. Energy. 113 (2014) 589–602. https://doi.org/10.1016/j.apenergy.2013.07.037.

DOI: 10.1016/j.apenergy.2013.07.037

Google Scholar

[64] M. Fattahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, A. Sabahi Namini, M. Shahedi Asl, Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: A numerical study, Ceram. Int. (2020) 0–1. https://doi.org/10.1016/j.ceramint.2020.01.195.

DOI: 10.1016/j.ceramint.2020.01.195

Google Scholar

[65] P. Bhattacharya, A.N. Samanta, S. Chakraborty, Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 1323–1333. https://doi.org/10.1007/s00231-009-0510-0.

DOI: 10.1007/s00231-009-0510-0

Google Scholar

[66] F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical and thermal properties of bulk ZrB2, J. Nucl. Mater. 467 (2015) 612–617. https://doi.org/10.1016/j.jnucmat.2015.10.024.

DOI: 10.1016/j.jnucmat.2015.10.024

Google Scholar

[67] R.G. Munro, Material properties of titanium diboride, J. Res. Natl. Inst. Stand. Technol. 105 (2000) 709. https://doi.org/10.6028/jres.105.057.

DOI: 10.6028/jres.105.057

Google Scholar