Ultraviolet Sensor Based on Organic/Inorganic Heterojunction between PEDOT:PSS and ZnO Nanoparticles Thin Films

Article Preview

Abstract:

In this work, the ultraviolet (UV) sensors based on heterojunction between layer of zinc oxide nanoparticles (ZnO NPs) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonic acid) (PEDOT:PSS) were fabricated, characterized and studied in the electrical response to UV 365 nm. The ZnO NPs layer was solution-based coated on the top of PEDOT:PSS film on the patterned indium tin oxide (ITO) coated on glass. Aluminum was deposited as the top electrode of the device. The current-voltage (I-V) characteristic shows the rectifying behavior in the dark field. With the UV irradiation, the reverse bias current can be found and the forward bias current also highly increases. The current-voltage data fitting with the thermionic emission model shows that the potential barrier height at the heterojunction decreases with illuminating by UV light. Relative high photoresponse of the device exhibits the potential to UV detector application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

December 2015

Export:

Price:

* - Corresponding Author

[1] E. Monroy, F. Omnes and F. Calle, Wide-bandgap semiconductor ultraviolet photodetector, Semicond. Sci. Technol. 18 (2003) R33-R51.

DOI: 10.1088/0268-1242/18/4/201

Google Scholar

[2] K. Liu, M. Sakurai and M. Aono, ZnO-based ultraviolet photodetectors, Sensors 10 (2010) 8604-8634.

DOI: 10.3390/s100908604

Google Scholar

[3] L. Schmidt-Mende and J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices, Mater. Today 10 (2007) 40-48.

DOI: 10.1016/s1369-7021(07)70078-0

Google Scholar

[4] Q. A. Xu, J. W. Zhang, K. R. Ju, X. D. Yang and X. Hou, ZnO thin film photoconductive ultraviolet detector with fast photoresponse, J. Cryst. Growth 289 (2006) 44-47.

DOI: 10.1016/j.jcrysgro.2005.11.008

Google Scholar

[5] V. Chivukula, D. Ciplys, M. Shur and P. Dutta, ZnO nanoparticle surface acoustic wave UV sensor, Appl. Phys. Lett. 96 (2010) 233512.

DOI: 10.1063/1.3447932

Google Scholar

[6] A.J. Gimenez, J.M. Yanez-Limon and J.M. Seminario, ZnO-paper based photoconductive UV sensor, J. Phys. Chem. C 115 (2011) 282-287.

DOI: 10.1021/jp107812w

Google Scholar

[7] H.G. Li, G. Wu, H.Z. Chen and M. Wang, Polymer/ZnO hybrid materials for near-UV sensors with wavelength selective response, Sens. Actuators B 160 (2011) 1136-1140.

DOI: 10.1016/j.snb.2011.09.038

Google Scholar

[8] F. Wang, D. Zhao, Z. Guo, L. Liu, Z. Zhang and D. Shen, Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles, Nanoscale 5 (2013) 2864-2869.

DOI: 10.1039/c3nr33748k

Google Scholar

[9] N.G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R.J. Potter, G. Dearden, K.G. Watkins, P. French and M. Sharp, Modification of the electrical properties of PEDOT: PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation, Chem. Phys. Lett. 484 (2010).

DOI: 10.1016/j.cplett.2009.11.054

Google Scholar

[10] T. Ikenoue, N. Kameyama and S. Fujita, Fabrication of PEDOT: PSS/ZnMgO Schottky-type ultraviolet sensors on glass substrates with solution-based mist deposition technique and hard-mask patterning, Phys. Status Solidi C 8 (2011) 613-615.

DOI: 10.1002/pssc.201000593

Google Scholar

[11] H. Chang, Z. Sun, K.Y. Ho, X. Tao, F. Yan, W.M. Kwok and Z. Zheng, A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure, Nanoscale 3 (2011) 258-264.

DOI: 10.1039/c0nr00588f

Google Scholar

[12] L. Wang, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen and X. Wang, High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods, Org. Electron. 11 (2010) 1318-1322.

DOI: 10.1016/j.orgel.2010.04.010

Google Scholar

[13] W. Wu, J.M. Bian, J.C. Sun, C.H. Cheng, Y.X. Wang and Y.M. Luo, A comparative study of ZnO film and nanorods for ZnO/polyfluorene inorganic/organic hybrid junction, J. Alloy. Compd. 534 (2012) 1-5.

DOI: 10.1016/j.jallcom.2012.04.067

Google Scholar

[14] B.K. Sharmar, N. Khare and S. Ahmad, A ZnO/PEDOT: PSS based inorganic/organic heterojunction, Solid State Commun. 149 (2009) 771-774.

DOI: 10.1016/j.ssc.2009.02.035

Google Scholar

[15] L. Dai, Conducting polymers, in: Intelligent Macromolecular for Smart Devices, Springer USA, 2004, pp.41-80.

Google Scholar

[16] B. Adhikari and S. Majumdar, Polymers in sensor applications, Prog. Polym. Sci. 29 (2004) 699-766.

Google Scholar

[17] D. Sun, H.J. Sue and N. Miyatake, Optical Properties of ZnO Quantum Dots in Epoxy with Controlled Dispersion, J. Phys. Chem. C 112 (2008) 16002-16010.

DOI: 10.1021/jp805104h

Google Scholar

[18] M. Soylu, M. Girtan and F. Yakuphanoglu, Properties of PEDOT: PEG/ZnO/p-Si heterojunction diode, Mater. Sci. Eng. B 177 (2012) 785-790.

DOI: 10.1016/j.mseb.2012.03.025

Google Scholar

[19] V. Aubry and F. Meyer, Schottky diodes with high series resistance: limitations of forward I-V methods, J. Appl. Phys. 76(12) (1994) 7973-7984.

DOI: 10.1063/1.357909

Google Scholar

[20] H. Chen, L. Hu, X. Fang and L. Wu, General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors, Adv. Funct. Mater. 22 (2012) 1229-1235.

DOI: 10.1002/adfm.201102506

Google Scholar