The Effect of Silane on the Biomechanical Properties of PEEK/HA Composite

Article Preview

Abstract:

Bioactive composites containing Polyetheretherketone / Hydroxyapatite (PEEK/HA) were prepared using nanomixer single screw extruder and injection molding. The loading of HA in PEEK matrix was made at different concentrations ranging from 10 wt% to 30 wt%. HA was treated with (3-Aminopropyl) trimethoxysilane, coupling agent, and compared to untreated HA in PEEK/HA composite to evaluate the changes in the biomechanical properties and cytotoxicity. The biomechanical properties including elongation at break and impact properties were assessed. Cell proliferation test was also performed with U937 cell line in the silane treated and untreated PEEK/HA composite. The results showed that silane coupled PEEK-HA had in general improved biomechanical properties than untreated HA and did not show cytotoxicity in vitro.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-431

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] Robert, M. S., Martin, S., and Silvana, F., Nanosurfaces and nanostructures for artificial orthopedic implants, Nanomedicine. 2 (2007) 861-874.

DOI: 10.2217/17435889.2.6.861

Google Scholar

[2] Martz, E. O., Goel, V. K., Pope, M. H., and Park, J. B., Materials and design of spinal implants—a review, Journal of Applied Biomaterials. 38 (1997) 267-288.

Google Scholar

[3] Cizek, G. R., and Boyd, L. M., Imaging pitfalls of interbody spinal implants, Spine. 25 (2000) 2633-2636.

DOI: 10.1097/00007632-200010150-00015

Google Scholar

[4] McAfee, P. C., Boden, S. D., and Brantigan, J. W. e. a., Symposium: a critical discrepancy—a criteria of successful arthrodesis following interbody spinal fusions. 26 (2001) 320-334.

DOI: 10.1097/00007632-200102010-00020

Google Scholar

[5] M.O. Speidel and P.J. Uggowitzer, Biocampatible nickel-free stainless steel to avoid nickel allergy, in: M.O. Speidel and P.J. Uggowitzer (Eds. ), Materials In Medicine, ETH Materials, Zurich, 1998, pp.191-207.

DOI: 10.1016/s1359-6462(98)00396-0

Google Scholar

[6] Biermann, P. J., Corvelli, A. A., and Roberts, J. C., Design, analysis, and fabrication of a composite segmental bone replacement implant, Journal of Advance Material. (1997) 2-8.

Google Scholar

[7] S.B. Goodman, D.J. Kelsey, and G.S. Springer, Composite implant for bone replacement, Journal of Composite Material. 31 (1997) 1593-1632.

DOI: 10.1177/002199839703101603

Google Scholar

[8] Toth, J. M., Wang, M., Estes, B. T., Scifert, J. L., Seim III, H. B., and Turner, A. S., Polyetheretherketone as a biomaterial for spinal applications, Biomaterials. 27 (2006) 324-334.

DOI: 10.1016/j.biomaterials.2005.07.011

Google Scholar

[9] Wang, A., Lin, R., Stark, C., and Dumbleton, J. H., Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements, Wear. 225-229 (1999) 724-727.

DOI: 10.1016/s0043-1648(99)00026-5

Google Scholar

[10] M.S. Abu Bakar, M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan, K.A. Khor, P. Cheang, Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants, Biomaterials. 24 (2003).

DOI: 10.1016/s0142-9612(03)00028-0

Google Scholar

[11] K. Aik Khor, P. Cheang, P. Hariram Kithva, R. Kumar, and S. Yu, In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites, Biomaterials. 26 (2005) 2343-52.

DOI: 10.1016/j.biomaterials.2004.07.028

Google Scholar

[12] Y. Zhang and K.E. Tanner, Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites, Journal of Material Science: Material, Medicine 19 (2008) 761-766.

DOI: 10.1007/s10856-007-3119-1

Google Scholar

[13] M. Younesi and M.E. Bahrololoom, Effect of temperature and pressure of hot pressing on the mechanical properties of PP-HA bio-composites, Materials and Design. 30 (2009) 3482-3488.

DOI: 10.1016/j.matdes.2009.03.011

Google Scholar

[14] S. Deb, M. Wang, K.E. Tanner, and W. Bonfield, Hydroxyapatite-polyethylene composites: effect of grafting and surface treatment of hydroxyapatite, Journal of Materials Science: Materials in Medicine. 7 (1996) 191-193.

DOI: 10.1007/bf00119729

Google Scholar

[15] S. Guhanathan, Saaraja. and M. Devi, (2004). Studies on interface in polyester/fly-ash particulate composites. Journal of Composite Interfaces 11, 43-66.

DOI: 10.1163/156855404322681046

Google Scholar

[16] C. Morrison, R. Macnair, C. MacDonald, A. Wykman, I. Goldie, and M.H. Grant, In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts, Biomaterials. 16 (1995) 987-992.

DOI: 10.1016/0142-9612(95)94906-2

Google Scholar

[17] L. Petrovic, D. Pohle, H. Munstedt, T. Rechtenwald, K. Schlegel, and S. Rupprecht, Effect of beta TCP filled polyetheretherketone on osteoblast cell proliferation in vitro, Journal of Biomedical Science. 13 (2006) 41-46.

DOI: 10.1007/s11373-005-9032-z

Google Scholar

[18] J.S. Sun, Y.H. Tsuang, C.J. Liao, H.C. Liu, Y.S. Hang, and F.H. Lin, The effects of calcium phosphate particles on the growth of osteoblast, Journal Biomedical Materials Research. 37 (1997) 324-334.

DOI: 10.1002/(sici)1097-4636(19971205)37:3<324::aid-jbm3>3.0.co;2-n

Google Scholar

[19] K.W. Lee, S. Wang, L. Lu, and M.J. Yaszemski, Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites, Biomaterials. 29 (2008) 2839-2848.

DOI: 10.1016/j.biomaterials.2008.03.030

Google Scholar

[20] M. Ngiam, S. Liao, A.V. Patil, Z. Cheng C.K. Chan, and S. Ramakrishna, The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering, Bone. 45 (2009).

DOI: 10.1016/j.bone.2009.03.674

Google Scholar